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ABSTRACT 

REGULATING IMMUNE MEDIATED PATHOLOGY IN CUTANEOUS 

LEISHMANIASIS: ROLES FOR IL-22 AND SKIN MICROBIOTA 

Ciara Gimblet 

Phillip Scott, Ph.D. 

 

Cutaneous leishmaniasis is a chronic disease characterized by ulcerating 

and disfiguring skin lesions. Infection with different species of Leishmania 

parasites is responsible for the initiation of this disease, yet most of the pathology 

observed is mediated by an unregulated immune response. The work presented 

in this thesis investigated the roles of IL-22 and the skin microbiota in regulating 

immune mediated pathology during cutaneous leishmaniasis. We found that IL-

22, a cytokine important in wound repair in the skin, was required to limit 

pathology when mice were infected with L. major. In order to promote lesion 

resolution, IL-22 induced keratinocyte migration and decreased IL-1α and IL-1β 

production, both important stages in tissue repair. Interestingly, this protective 

role for IL-22 was only observed with a high dose of infection, suggesting a 

threshold of inflammation is required for IL-22 to limit pathology. We also found 

that the L. major infection in mice, as well as, L. braziliensis infection in humans 

caused a dysbiosis in the skin microbiota on lesional skin and nearby skin sites, 

characterized by a dominance of Staphylococcus spp. or Streptococcus spp. 

Interestingly, this dysbiotic microbiota was also transmissible to co-housed naïve 

skin and exacerbated skin inflammation during L. major infection and during an 
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acute contact hypersensitivity model. These data are the first to demonstrate that 

a dysbiotic skin microbiota can be transmitted to non-inflamed tissue and 

demonstrate how a naturally occurring dysbiosis can worsen disease during 

cutaneous leishmaniasis. Work presented in this thesis demonstrates that both 

IL-22 and the skin microbiota have distinct roles during cutaneous leishmaniasis. 

Future studies will be aimed at how these factors can be regulated to aid in the 

treatment of the disease. 
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CHAPTER 1: INTRODUCTION 

		

1.1 Leishmaniasis 

Leishmaniases are a group of diseases caused by infection with 

protozoan parasites belonging to the genus, Leishmania spp. Affecting people in 

over 90 countries worldwide, leishmaniasis has had a major impact on human 

health. Yet, it still remains a neglected tropical disease (CDC 2013). There are 

over 20 species of the parasite that cause disease in humans and about 30 

species of phlebotomine sand flies that carry the parasite. In the sand fly, 

leishmania parasites mature into metacyclic promastigotes, which are injected 

into the skin of the mammalian hosts during blood feeding. Once injected into the 

skin, the promastigotes are taken up by phagocytic cells, where they transform 

into the replicative amastigote stage. After multiple rounds of replication, these 

amastigotes burst from the cell and then can infect other phagocytic cells. The 

infected phagocytes are then taken up upon blood feeding by another sand fly, 

where the parasites differentiate into the promastigote stage, completing the life 

cycle (Kaye and Scott 2011).  

Depending on the species, the disease can manifest in several forms: 

visceral, cutaneous, diffuse cutaneous and mucocutaneous. Visceral 

leishmaniasis, caused mostly by Leishmania donovani and Leishmania infantum, 

affects several internal organs causing fever, weight loss and anemia and 

untreated cases of visceral leishmaniasis are almost always fatal. Cutaneous 
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leishmaniasis is the most common form throughout the world and can manifest in 

ulcerating lesions, many of which can resolve but leave disfiguring scars. The 

predominant species that cause cutaneous leishmaniasis are the Old World 

species, Leishmania major, and the New World species Leishmania mexicana, 

Leishmania amazonensis, Leishmania braziliensis, Leishmania panamanensis. 

Some individuals infected with L. braziliensis and L. panamanensis develop 

chronic ulcers that have the potential to progress to the mucocutaneous form, 

which can cause severe disfiguration (Kedzierski 2011).  

Leishmania parasites can infect a variety of mammalian hosts, including 

humans, dogs, and rodents. In certain countries where leishmaniasis is endemic, 

infected domestic dogs are considered the predominant reservoir for leishmania 

parasites and have been targeted to help prevent the spread of the disease 

(Oliveira et al. 2008; Lima et al. 2012; Esch et al. 2012). Control of the sand fly 

vector has also been tested as a measure to help prevent new infections, but it is 

not yet clear whether it will be useful for all forms of the disease (Gonzalez et al. 

2015). The development of an effective vaccine would provide an additional 

measure of disease control and is an area of active investigation. 

Pentavalent antimonial therapies have been the first line of treatment for 

patients with leishmaniasis for almost 70 years. However many patients require 

multiple rounds of treatment before a successful cure is reached, and can 

experience severe side effects due to drug toxicity (Kedzierski 2011). Currently, 

there is no protective vaccine against human leishmaniasis despite many 
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experimental efforts and large human trials over the past 25 years (Basu et al. 

2005; Chakravarty et al. 2011; Bhattacharya et al. 2015; Miura et al. 2015)Most 

vaccine strategies have been focused on developing strong antibody responses, 

yet prior studies have shown that antibodies have no protective effect on the 

disease (Glennie and Scott 2016). The success of future vaccine strategies 

depends on a thorough understanding of how protective immunity is achieved. 

 

1.2 Protective immune responses in leishmaniasis  

Leishmania parasites also infect and cause disease in mice, making the 

murine model of infection useful in studying the immune response. For 

cutaneous leishmaniasis, L. major has been the most widely used parasite in 

these studies. Seminal work using the mouse model demonstrated that 

susceptibility to infection with leishmania parasites depends on the strain of 

mouse (Kellina 1973). Subsequent studies focused on understanding the 

immunological differences that lead to susceptibility and resistance to leishmania. 

Several studies demonstrated that an IL-4 driven Th2 immune response was 

responsible for uncontrolled parasite growth in susceptible mouse strains, while 

the production of IFN-γ from activated Th1 cells were responsible for control of 

parasite growth (Scott et al. 1988; Heinzel et al. 1989; Sadick et al. 1990; Heinzel 

et al. 1993; Sypek et al. 1993; Kopf et al. 1996). IL-12 is the key cytokine that 

initiates the protective Th1 response (Mattner et al. 1996; Scharton-Kersten et al. 

1995). Upon infection with leishmania parasites, reactive oxygen species (ROS) 
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are induced in phagocytic cells. This response, known as the respiratory burst 

can kill a portion of the parasites. However, a stronger anti-parasitic response 

requires the release of IFN-γ, which induces infected cells to produce more ROS 

and nitric oxide (NO) (Scott and Novais 2016). Interestingly, unlike in murine 

macrophages, NO is not induced or required for parasite killing in human cells 

which rely more on the respiratory burst (Novais et al. 2014b). This data 

suggests that mice and humans eliminate the parasite using different 

mechanisms. Nonetheless, it is clear that in both mice and humans, IFN-γ is 

required to effectively control parasite growth. 

There are several sources of IFN-γ during leishmania infections, including 

CD4 T cells, CD8 T cells, γδ T cells, and NK cells. While CD4 T cells are the 

most crucial source for parasite control (Chakkalath et al. 1995; Erb et al. 1996), 

IFN-γ from CD8 T cells and NK cells is important in fortifying the protective Th1 

response (Belkaid et al. 2002b; Scharton and Scott 1993; Uzonna, Joyce, Scott 

2004; Laouar et al. 2005). In addition, TNF-α acts synergistically with IFN-γ to 

enhance parasite killing (Bogdan et al. 1990; Green et al. 1990). These studies 

demonstrate the need for multiple arms of the immune response working 

together to effectively control parasite growth.  

The innate response also plays a role in contributing to the protective Th1 

immune response. Upon recognition of the parasite, NK cells are responsible for 

the early IFN-γ production (Scharton and Scott 1993; Bajenoff et al. 2006). Even 

cells from the non-hematopoietic niche contribute to initiating and maintaining a 
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protective Th1 response. Keratinocytes can be an early source of IL-12, as well 

as other cytokines that promote IFN-γ production (Ehrchen et al. 2010). 

  Even in the face of a strong Th1 response, leishmania parasites persist 

after the resolution of the lesion, leading to a concomitant immunity that protects 

against reinfection. The mechanism of how the parasite persists is not completely 

clear, but the production of the regulatory cytokine, IL-10, plays a role by 

dampening the Th1 response (Belkaid et al. 2001; Belkaid et al. 2002a). It is 

thought that protection against reinfection requires parasite persistence and that 

this immunity is dependent upon both CD4 and CD8 memory T cells (Muller 

1992). In cutaneous leishmaniasis, both short-lived effector memory T cells and 

long-lived central memory T cells are required for protection against re-infection 

(Peters et al. 2014; Zaph et al. 2004). More recently, skin resident CD4 T cells 

have also been identified in L. major immune mice. These cells remain in the skin 

long after the primary infection where they produce IFN-γ in response to the 

parasite and recruit circulating T cells in the skin to help further prevent parasite 

growth (Glennie et al. 2015). The immunity provided by these multiple subsets of 

memory T cells makes them ideal vaccine targets. Additional studies are 

necessary to learn about how these cells are maintained. 

 While we understand the type of immune response generated during 

leishmania infection and how parasite replication is controlled, we still do not fully 

comprehend how long-lasting immunity is acquired or how to effectively translate 

that immunity to a protective vaccine in humans. The treatment for cutaneous 
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leishmaniasis also needs to be improved and may require regulation of the 

immune response to achieve effective therapy. In the next section, we discuss 

the role of the immune response in the pathogenesis of leishmania infections. 

 

1.3 Immune mediated pathology in cutaneous leishmaniasis 

Pathology in cutaneous leishmaniasis is not always a consequence of 

uncontrolled parasite growth. In fact, even though patients infected with 

leishmania show signs of overt pathology, there are sometimes very few 

parasites found in the lesions (Nylen and Eidsmo 2012). Instead, much of the 

disease observed in cutaneous leishmaniasis has been associated with immune 

mediated pathology. Interestingly, the same immune responses that provide 

protection exacerbate the disease when the responses are not controlled. TNF-α 

and IFN-γ both help promote the Th1 response necessary to kill leishmania 

parasites. Yet, patients with severe, chronic cutaneous and mucocutaneous 

leishmaniasis express higher levels of these cytokines (Bacellar et al. 2002; 

Gaze et al. 2006; Melby et al. 1994). These studies suggest that the balance 

between parasite control and tissue protection must be carefully regulated in 

order to limit disease. In fact, patients treated with drugs targeting the TNF-α 

pathway in combination with anti-leishmania drugs, experience faster healing 

times and higher cure rates than patients with anti-leishmania treatment alone 

(Lessa et al. 2001; Bafica et al. 2003; Machado et al. 2007; Ribeiro de Jesus et 
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al. 2008). In the treatment of cutaneous leishmaniasis, it is thus necessary to 

consider the effects of immunotherapy in addition to anti-parasitic drugs. 

Other cytokines have been implicated in mediating pathology during 

cutaneous leishmaniasis as well. IL-1β and IL-1α are cytokines produced mainly 

by innate cells as well as non-hematopoietic cells, which in the skin are mostly 

keratinocytes. While they have important anti-microbial properties, these 

cytokines can also lead to skin inflammation in diseases including psoriasis, 

atopic dermatitis, and cutaneous lupus erythematous (Mee et al. 2006; 

Rauschmayr, Groves, Kupper 1997; Shepherd, Little, Nicklin 2004; Mattii et al. 

2013; Nutan, Kanwar, Parsad 2012; Jensen 2010). IL-1 family cytokines, in 

particular IL-1β, has also been implicated in mediating disease during cutaneous 

leishmaniasis. In humans, IL-1β expression correlates with more severe 

cutaneous leishmaniasis (Fernandez-Figueroa et al. 2012; Novais et al. 2014a). 

These data suggest that IL-1β plays a role in mediating pathology in the skin. 

Yet, how this immunopathology occurs remains unclear. IL-1β can lead to the 

production of chemokines, which can recruit inflammatory cells into the skin, and 

matrix metalloproteinases, which break down the extracellular matrix and 

damages the skin. This relationship between IL-1β and neutrophil recruitment to 

lesional skin has also been demonstrated in mice infected with L. major (Voronov 

et al. 2010; Gonzalez-Lombana et al. 2013; Charmoy et al. 2016). From these 

studies, it is clear that IL-1β and neutrophils exacerbate pathology during 

cutaneous leishmaniasis, while having minimal effect on parasite control. IL-1β 

recruits neutrophils and other inflammatory cells to the skin, but can also drive 
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the development and maintenance of Th17 cells (Sutton et al. 2006; Yang et al. 

2008; Ikeda et al. 2014), which are known to drive inflammation in the skin during 

cutaneous leishmaniasis in humans (Souza et al. 2012) as well as in mice (Lopez 

Kostka et al. 2009; Anderson et al. 2009; Gonzalez-Lombana et al. 2013). Using 

a non-healing mouse model of cutaneous leishmaniasis, our lab has 

demonstrated that IL-10 signaling is required to limit an IL-17-mediated 

pathology. Although infection with L. major normally resolves in a C57BL/6 

mouse, we observed increased ulceration and immunopathology that was not 

ameliorated unless we neutralized IL-17. It was previously believed that IFN-γ 

and TNF-α were the main drivers of the immunopathology associated with 

cutaneous leishmaniasis, however our recent studies indicate that Th17 cells 

also play a critical role and warrant further investigation into other factors that 

could be important in lesion resolution and pathology (Anderson et al. 2009; 

Lopez Kostka et al. 2009; Pitta et al. 2009; Gonzalez-Lombana et al. 2013; 

Banerjee et al. 2016) 

The lack of regulatory cytokines has proven to be just as important as the 

presence of pro-inflammatory cytokines. IL-10, a cytokine known for its ability to 

limit inflammation has a prominent role during cutaneous leishmaniasis as it 

down-regulates the Th1 response during infection. This role proves important 

because it can limit inflammation as well as maintain a low-level of parasites 

necessary to develop long-lasting immunity (Belkaid et al. 2001; Belkaid et al. 

2002a; Anderson et al. 2007). However, low expression of IL-10 and/or the IL-10 

receptor has been associated with more severe disease during cutaneous and 
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mucocutaneous leishmaniasis in human patients (Bacellar et al. 2002; Faria et al. 

2005; Gaze et al. 2006; Gomes-Silva et al. 2007). While results from the mouse 

model can lead to varying results depending on the strain of the mouse, it is 

evident that IL-10 is critical in modulating the immune response during cutaneous 

leishmaniasis (Kane and Mosser 2001; Gonzalez-Lombana et al. 2013). 

T cells produce these pro-inflammatory and anti-inflammatory cytokines 

and are some of the main cell types that regulate immune mediated pathology 

during cutaneous leishmaniasis. CD4+ T cells are a major source of inflammatory 

cytokines including IFN-γ, TNF-α and IL-17 in the skin. And there is clear 

evidence that CD4+ T cells mediate pathology during leishmania infections. RAG 

deficient mice, which lack T and B cells, are unable to control parasite growth, 

yet do not develop skin pathology in response to several species of leishmania 

until quite late in the infection (Terabe et al. 1999; Belkaid et al. 2002b; Novais et 

al. 2013). However, these mice develop lesions when they receive CD4+ T cell 

transfers (Soong et al. 1997) during L. amazonensis infection suggesting that 

CD4+ T cells can drive pathology. CD8+ T cells can also be a source of 

inflammatory cytokines in the skin. In fact, when transferred into RAG deficient 

mice during L. major and L. braziliensis infections, CD8+ T cells lead to 

increased pathology with larger lesion development (Belkaid et al. 2002b; Novais 

et al. 2013). However, it appears the cytotoxicity, not cytokine production, from 

CD8+ T cells is responsible for the tissue damage. During cutaneous 

leishmaniasis in humans, cytotoxicity from CD8+ T cells is associated with 

ulceration and more severe pathology (Faria et al. 2005; Santos Cda et al. 2013; 
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Novais et al. 2014a; Cardoso et al. 2015). These data combined with studies 

using mouse models indicate that while CD8+ T cells can help mediate parasite 

control, they are also critical in the immune mediated pathogenesis during 

cutaneous leishmaniasis. 

During cutaneous leishmaniasis, pro-inflammatory cytokines and the cells 

that produce them drive the development of lesions and ulceration in the skin. 

This immune mediated pathology is also present in other skin diseases including 

psoriasis and atopic dermatitis, in which Th1, Th2, Th17, and cytotoxic CD8+ T 

cells all have distinct roles in causing a breakdown in the barrier integrity of the 

skin(Di Cesare, Di Meglio, Nestle 2009; Pantelyushin et al. 2012; Martin et al. 

2012; Guilloteau et al. 2010; Hijnen et al. 2013; Di Meglio et al. 2016; Hennino et 

al. 2007; Hennino et al. 2011). Therapies designed to dampen the inflammatory 

response are currently being used in psoriasis and atopic dermatitis, but not to a 

large degree in cutaneous leishmaniasis. In cutaneous leishmaniasis, 

immunotherapies remain a complicated issue due to the fact that the 

development of a protective immune response is necessary to control the 

parasite. In this thesis, we will define some of the factors that influence the 

immune responses mediating damage to the skin during cutaneous 

leishmaniasis.  

 

1.4 The role of Interleukin-22 in skin inflammation 
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There are many regulators, positive and negative, of inflammation in the 

skin, but one of particular interest is IL-22 due to its role in wound healing and 

inflammation in the skin. In the past few years there has been increased focus on 

the IL-10 family of cytokines, which consist of IL-10, IL-19, IL-20, IL-26, the λ-

interferons, and probably its most studied member, IL-22. IL-22 is expressed in 

several tissues throughout the body including, the thymus, brain, liver, gut, lung, 

pancreas, spleen, and skin, making its potential effects widespread (Dumoutier, 

Louahed, Renauld 2000; Wolk et al. 2004). IL-22 is produced by several cellular 

sources including, CD4+ T cells, CD8+ T cells, γδ T cells, NKT and NK cells, and 

several innate lymphoid cell populations (Wolk et al. 2002; Martin et al. 2009; 

Spits et al. 2013; Cella et al. 2009; Goto et al. 2009). Non-lymphoid sources, 

including macrophages, neutrophils, and fibroblasts, have been reported, but 

may represent a smaller fraction of production (Hansson et al. 2013; Zindl et al. 

2013; Ikeuchi et al. 2005). 

IL-22 signals through the heterodimer comprised of IL-22R1, a type two 

cytokine receptor member of the IL-10 family, and the IL-10R2. Interestingly, IL-

22 is different from most other interleukins in that it does not act on immune cells. 

IL-22R1 expression is limited to non-hematopoietic epithelial cells and 

fibroblasts. In the skin keratinocytes and fibroblasts are the main targets of IL-22 

(Wolk et al. 2004; Brembilla et al. 2016). The effects of IL-22 on target cells are 

mediated through activation of the Jak1/Tyk2 kinases leading to the 

phosphorylation of STAT3, primarily, but also STAT1 and STAT5 (Lejeune et al. 

2002; Wolk et al. 2004). The activation of these pathways leads to proliferation, 
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migration, and upregulation of pro-survival genes, while it inhibits differentiation 

in keratinocytes (Sabat, Ouyang, Wolk 2014). These effects of IL-22 are 

important in wound healing, as well as skin inflammation. 

As epithelial cells and fibroblasts are the main targets of IL-22, the effects 

of this cytokine at barrier surfaces are necessary during tissue repair. During 

intestinal damage induced by colitis, IL-22 causes epithelial cells to proliferate 

and migrate, ultimately leading to tissue repair and which can protect against 

tumor formation (Zenewicz et al. 2008; Pickert et al. 2009; Huber et al. 2012). 

During HIV and SIV infections, IL-22 limits epithelial damage in the intestine and 

protects against bacterial translocation (Klatt et al. 2012; Kim et al. 2012). 

Similarly, IL-22 contributes to protection and regeneration of lung epithelial cells 

during influenza infection (Kumar et al. 2013; Paget et al. 2012; Pociask et al. 

2013). This protection also prevented secondary bacterial infections (Ivanov et al. 

2013). These effects of IL-22 are also seen in the skin. Keratinocytes are the 

main target of IL-22 in the skin. Using an in vitro injury model, one study 

demonstrated that IL-22 induced proliferation and migration of keratinocytes to 

induce wound closure after damage (Boniface et al. 2005). IL-22 also limits the 

differentiation of keratinocytes (Boniface et al. 2005; Wolk et al. 2006; Wolk et al. 

2009). While continually blocking differentiation could inhibit wound healing, it is 

helpful in the initial stages when keratinocytes need to regenerate the basal layer 

of the epidermis. Fibroblasts can also respond to IL-22 and contribute to wound 

healing after injury. IL-22 induces myofibroblast differentiation and helps with 

wound closure in an acute injury model (McGee et al. 2013). Wound healing is 
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an important feature during cutaneous leishmaniasis involving a regulated 

response of keratinocyte survival, fibroblast maturation, and collagen deposition 

(Eidsmo et al. 2005; Eidsmo et al. 2007; Tasew et al. 2010; Almeida et al. 2015; 

Sakthianandeswaren et al. 2005; Baldwin et al. 2007; Elso et al. 2004b; Elso et 

al. 2004a), but whether IL-22 has these effects during infection are not yet 

known.  

The effects of IL-22 on wound healing can also lead to inflammation and 

pathology depending on the context. In addition to inducing proliferation and 

migration, IL-22 also induces chemokine expression in epithelial cells. 

Neutrophilic-attracting chemokines like CXCL1, CXCL2, CXCL5, and CXCL8 are 

induced in epithelial cells after exposure to IL-22 (Aujla et al. 2008; Wolk et al. 

2009). These chemokines create a cascade of inflammation that can cause more 

damage than repair. These effects are amplified in combination with other 

inflammatory cytokines including IL-17, TNF-α, and IFN-γ (Wolk et al. 2004; Wolk 

et al. 2009; Guilloteau et al. 2010). In fact, IL-22 limits lung injury in the absence 

of IL-17, while driving inflammation when IL-17 is present (Sonnenberg et al. 

2010). The balance between protection and pathology must also be regulated 

during cutaneous leishmaniasis, and IL-22 may play a role in that process. 

IL-22 also causes inflammation and pathology in the skin. Mice that 

constitutively express IL-22 or have IL-22 injected into their skin develop severe 

inflammation in the skin, similar to what is observed during psoriasis and atopic 

dermatitis (Zheng et al. 2007; Wolk et al. 2009; Ma et al. 2008; Van Belle et al. 
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2012; Wang et al. 2013). Similar to what is observed during tissue repair, IL-22 

induces keratinocyte proliferation during inflammatory skin disorders. However in 

this scenario, hyperproliferation leads to acanthosis and inflammation that 

worsens the pathology.  

IL-22 also has antimicrobial effects at barrier surfaces. In the intestine, 

lung, and skin, IL-22 induces the expression of antimicrobial peptides in the β-

defensins, S100, and Reg families (Wolk et al. 2004; Zheng et al. 2008; Wolk et 

al. 2006; Aujla et al. 2008; Brand et al. 2006; Sekikawa et al. 2010). These 

antibacterial actions lead to protection from invading pathogens, but also regulate 

the commensal populations in the intestinal tract (Sonnenberg et al. 2012; 

Zenewicz et al. 2013). However, the modulation of the commensal population 

does not always lead to protection. IL-22 induces the expression of antimicrobial 

peptides that suppress Enterobacteriaceae colonization by nutrient sequestration 

in the intestine. However, in the absence of this commensal, the pathogen 

Salmonella enterica is able to better colonize and cause inflammation (Behnsen 

et al. 2014). During infection with the parasite Toxoplasma gondii, IL-22 also 

drives inflammation in the intestinal tract (Munoz et al. 2009; Wilson et al. 2010), 

but whether it is due to an imbalance in the commensal bacteria is unknown. 

Commensal bacteria on the skin drive an inflammatory response that could lead 

to lesion development in cutaneous leishmaniasis (Naik et al. 2012), but whether 

the anti-microbial effects of IL-22 can regulate this process is unknown. 
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IL-22 is an active member of the IL-10 cytokine family at barrier surfaces. 

The roles of IL-22 in the skin, gut, lung, and liver have demonstrated that this 

cytokine can affect the outcomes of injury, infection, and inflammation in a variety 

of ways. During cutaneous leishmaniasis, the processes of wound healing and 

inflammation must be tightly regulated in order to successfully resolve lesions 

and control parasite replication. The actions of IL-22 on the skin immunity may be 

a key player in these processes.  

 

1.5 The microbiota and skin immunity 

	 The microbiota is the collective populations of bacteria, viruses, fungi, 

protozoa and archaea found in our environment or associated with various 

tissues and organs throughout our body. It has been estimated that there are 

from 3-10 times more bacterial cells in the body than human cells (Woese 1987; 

Sender, Fuchs, Milo 2016), and it is evident that the microorganisms associated 

with our body are important players in our biology. Bacteria are found in or on 

many parts of the body, including the intestinal tract, skin, mouth, and the 

reproductive tract. While the exact numbers may vary depending on size and 

gender of the person, early studies suggested that the intestinal tract harbored 

the most bacteria with about 1014 cells, followed by the skin with about 1012 cells, 

while the rest of the body sites harbor around 1012 bacteria combined (Savage 

1977; Berg 1996). Many studies have focused on the bacteria in the intestinal 
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tract, but recently studying the commensal bacteria on the skin has become a 

larger area of interest. 

 Prior to the age of genomics, culture based methods were used to study 

the bacteria in the environment. However, it became apparent that simply 

culturing samples was not capturing all the bacteria present (Amann, Ludwig, 

Schleifer 1995; Staley and Konopka 1985). The discovery that bacterial 

phylogeny could be determined based on the well-conserved 16S ribosomal RNA 

(rRNA) gene (Woese 1987) set the stage for the present-day microbiota studies. 

Presently, bacterial communities are identified using high-throughput 

sequencing. The Human Microbiome Project was started in 2007 and collected 

over 200 samples across various body sites in order to define the microbiota of 

healthy adults. This study used 16S rRNA gene and whole genome sequencing 

to demonstrate that the different body sites harbored distinct, yet diverse 

bacterial communities (NIH HMP Working Group et al. 2009). This study, along 

with many others that followed, suggested that a healthy microbiota is typically a 

diverse one. 

Subsequent studies have shown that perturbations in the microbiota, often 

referred to as dysbiosis, are associated with disease and inflammation. This 

association with disease and dysbiosis has been observed during inflammatory 

bowl disorders, metabolic disorders, cancer, as well as inflammatory skin 

diseases (Sartor 2009; Garrett et al. 2010; Ley et al. 2005; Turnbaugh et al. 

2006; Castellarin et al. 2012; Gao et al. 2008; Kong et al. 2012). While many of 
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these studies show only correlations between dysbiosis and disease, more 

recent research has focused on determining whether dysbiosis is a cause or 

consequence of disease. A lot of those studies have focused on the intestinal 

tract. Bacteria in the intestinal tract that cause dysbiosis have been shown to 

drive disease in arthritis, obesity, cancer, and colitis (Wu et al. 2010; Turnbaugh 

et al. 2006; Wu et al. 2009; Sellon et al. 1998; Elinav et al. 2011a; Zenewicz et al. 

2013). These effects are often mediated through modulation of immune 

responses. Interestingly, there is also evidence that dysbiosis can drive an 

immune regulatory phenotype and protect against disease in the intestine 

(Atarashi et al. 2013). It is evident that the intestinal microbiota interacts with the 

immune system to either drive disease, or protect the host from inflammation. It 

is not yet evident that the microbiota on the skin are also as important in 

diseases. 

While it is clear that the bacteria on the skin are quite numerous, less is 

known about how those microorganisms influence immunity in the skin. The 

diversity of the skin microbiota depends on the body site as well as what type of 

environment is present at that site. For example, oily, dry, and moist body sites 

all harbored distinct bacterial communities (Grice et al. 2009). This difference in 

the types of microbes on different body sites was also observed in fungal and 

viral communities (Findley et al. 2013; Hannigan et al. 2015). While these studies 

demonstrated that healthy skin sites typically have diverse microbial populations, 

the same is not always true during disease in the skin. 
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Inflammatory skin disorders, including atopic dermatitis, psoriasis, and 

chronic diabetic wounds, have been associated with changes in the skin 

microbiota (Kong et al. 2012; Alekseyenko et al. 2013; Gao et al. 2008; Price et 

al. 2009; Grice et al. 2010; Loesche et al. 2016). However, it is not clear what 

causes these changes. During inflammation, cytokines, chemokines, and 

antimicrobial peptides are often produced, potentially explaining why there are 

changes in the microbiota. Some bacteria, like Salmonella typhimurium and 

Escherichia coli, can utilize products of the immune response by changing their 

metabolic processes. This adaptation allows them to thrive in the face of 

inflammation, ultimately leading to dysbiosis in the microbiota (Winter et al. 2010; 

Behnsen et al. 2014; Hughes et al. 2017). This phenomenon is apparent in the 

intestine (Atherton and Blaser 2009; Behnsen et al. 2014), but it remains unclear 

whether it occurs in the skin.  

But what is clear is that the skin microbiota can influence the cutaneous 

immune response. Recent studies have shown that prominent members of the 

skin microbiota, for example, Staphylococcus spp. can drive inflammatory Th1 

and Th17 responses in the skin. In some cases the cytokines from these cells 

can lead to protection from a pathogen (Naik et al. 2015), while driving 

inflammation in response to other pathogens, including L. major infection (Naik et 

al. 2012). Bacteria can even drive the development of regulatory responses in 

the early stages of life that help limit inflammation during infection experienced as 

an adult (Scharschmidt et al. 2015). These studies demonstrate how colonization 

with bacteria can influence skin immunity, but it is unknown whether naturally 
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occurring dysbiosis has any influence on skin disease. There is some evidence 

of dysbiosis driving disease in atopic dermatitis (Kobayashi et al. 2015), but 

whether dysbiosis occurs during leishmania infection or influences disease in 

cutaneous leishmaniasis remains 

unknown.
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Figure 1. Leishmania transmission, control, and role in immune mediated pathology. (a) 
Sandflies transfer leishmania parasites into the skin upon blood feeding. The parasite is taken up 
by phagocytic cells, where it can replicate and spread to other cells. The parasite is transmitted 
back into the sandfly upon another blood feeding. (b) IL-12 production from dendritic cell induces 
IFN-γ production from T cells and NK cells. IFN-γ activates infected cells to kill the parasite. (c) 
During infection, inflammatory cytokines are produced by T cells. These cytokines recruit 
inflammatory monocytes and neutrophils, which make IL-1α and IL-1β. The recruitment of these 
inflammatory cells ultimately lead to tissue damage. IL-10 can limit this pathology by blocking 
cytokine production from T cells. 

 

1.6 Summary 

 It is clear that the magnitude of the disease associated with leishmania 

infections is not only mediated by parasite replication, but also includes the 
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immune response as a major cause of pathology. Several cytokines have been 

identified to regulate inflammation during cutaneous leishmaniasis. Inflammatory 

cytokines, IL-1β, TNF-α, IFN-γ, and IL-17 all seem to mediate tissue damage in 

the course of infection with leishmania parasites. On the other hand, regulatory 

cytokines like IL-10 are also important to limit the actions of the inflammatory 

cytokines.  

Limiting inflammation and establishing a wound healing response is 

required to resolve cutaneous leishmaniasis lesions (Baldwin et al. 2007; Elso et 

al. 2004a; Elso et al. 2004b). IL-22 is a cytokine of interest because of its dual 

roles in inflammation and wound healing. While there is some evidence that IL-22 

is associated with protection during visceral leishmaniasis (Pitta et al. 2009; 

Ghosh et al. 2013), the role of IL-22 is less well studied during cutaneous 

leishmaniasis. Here, we will investigate the role of IL-22 during cutaneous 

leishmaniasis to determine if it is involved in driving inflammation or limiting 

disease. IL-22 can also regulate the commensal microbiota, another potential 

way it can affect the immune response in the skin. While there are varying results 

describing the effects of the microbiota during cutaneous leishmaniasis (de 

Oliveira et al. 1999; Oliveira et al. 2005; Naik et al. 2012), it is clear that the skin 

microbiota have a role during this disease. Here, we will investigate whether the 

microbiota is influenced by cutaneous leishmaniasis and if those naturally 

occurring changes influence the outcome of disease. The goals of these studies 

are designed to better understand what factors mediate immunopathology during 
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cutaneous leishmaniasis, with the hope to develop more effective therapies for 

the disease.  
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CHAPTER 2: IL-22 PROTECTS AGAINST TISSUE DAMAGE DURING 
CUTANEOUS LEISHMANIASIS  

 

2.1 Abstract 

Cutaneous leishmaniasis is a disease characterized by ulcerating skin 

lesions, the resolution of which requires an effective, but regulated, immune 

response that limits parasite growth without causing permanent tissue damage. 

While mechanisms that control the parasites have been well studied, the factors 

regulating immunopathologic responses are less well understood. IL-22, a 

member of the IL-10 family of cytokines, can contribute to wound healing, but in 

other instances promotes pathology. Here we investigated the role of IL-22 

during leishmania infection, and found that IL-22 limits leishmania-induced 

pathology when a certain threshold of damage is induced by a high dose of 

parasites. Il22-/- mice developed more severe disease than wild-type mice, with 

significantly more pathology at the site of infection, and in some cases 

permanent loss of tissue. The increased inflammation was not due to an 

increased parasite burden, but rather was associated with the loss of a wound 

healing phenotype in keratinocytes. Taken together, these studies demonstrate 

that during cutaneous leishmaniasis, IL-22 can play a previously unappreciated 

role in controlling leishmania-induced immunopathology. 

 

 



www.manaraa.com

23	

2.2 Introduction 

Cutaneous leishmaniasis is a major neglected tropical disease affecting 

about 12 million people globally (Kedzierski 2010). The spectrum of clinical 

manifestations in cutaneous leishmaniasis ranges from self-limiting nodules to 

non-healing ulcers with a highly inflammatory immune response, and the disease 

is caused by several different species of leishmania that reside within phagocytic 

cells.  Control of the parasites requires IFN-γ produced by CD4+ Th1 cells (Wang 

et al. 1994).  However in spite of a Th1 response, some patients exhibit severe 

non-healing lesions (Bacellar et al. 2002; Gaze et al. 2006). Thus, in addition to 

controlling the parasites, regulating the inflammatory response is essential for 

disease control.  TNF-α (Antonelli et al. 2005; Bafica et al. 2003), IL-1β 

(Fernandez-Figueroa et al. 2012; Voronov et al. 2010) and IL-17 (Gonzalez-

Lombana et al. 2013; Lopez Kostka et al. 2009) have all been implicated in 

promoting pathology in leishmaniasis, and damage caused by cytolytic CD8 T 

cells can also contribute to these immunopathologic responses (Crosby et al. 

2014; da Silva Santos et al. 2014; Novais et al. 2013; Novais et al. 2014a). IL-10 

can regulate some of these immunopathologic responses (Faria et al. 2005; 

Gonzalez-Lombana et al. 2013). Since drug treatment is often ineffective (Bafica 

et al. 2003), and no human vaccine exists for the disease, a better understanding 

of the factors that mediate lesion resolution is essential to help develop new 

immunotherapies for the disease. 
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Recently, members of the IL-10 subfamily have been identified as key 

players in the wound healing process (Sa et al. 2007; Sun et al. 2013; Wolk et al. 

2002). IL-22 is a prominent member of this family, and can instruct non-immune 

cells, such as epithelial cells and fibroblasts, to proliferate, migrate, and mend the 

extracellular matrix after injury (Boniface et al. 2005; McGee et al. 2013). These 

functions are important in maintaining surface barrier integrity and protection 

against subsequent infections. Additionally, IL-22 has been shown to induce the 

production of antimicrobial peptides from epithelial cells in order to maintain a 

balanced commensal population and prevent dysbiosis (Sonnenberg et al. 2011; 

Zenewicz et al. 2013; Zheng et al. 2008). However, while IL-22 is important for 

tissue protection and contributes to wound healing in the skin, gut, and lungs 

(Aujla et al. 2008; McGee et al. 2013; Pickert et al. 2009), it can also be 

pathogenic in other inflammatory conditions, such as psoriasis(Van Belle et al. 

2012). These pathologic responses are mediated by some of the same functions 

of IL-22 that are protective, including uncontrolled proliferation and the production 

of inflammatory molecules(Ma et al. 2008; Sonnenberg et al. 2010; Van Belle et 

al. 2012; Zheng et al. 2007). Why IL-22 is protective in some situations and 

pathologic in others is unclear, but may depend on the amount of IL-22 

produced, as well as the presence of other inflammatory cytokines such as IL-17 

(Guilloteau et al. 2010; Sonnenberg et al. 2010).  

Like in some patients, the lesions of C57BL/6 mice normally heal after L. 

major infection. In order to determine if IL-22 contributes to resolution of a 

leishmanial infection, we infected Il22-/- mice with Leishmania major and L. 
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braziliensis and monitored the course of infection. We found that Il22-/- mice 

exhibited increased tissue pathology compared with infections in wild-type mice. 

The absence of IL-22 did not influence the parasite burden, but rather led to 

higher levels of keratin 6a and keratin 16, both of which have been implicated in 

inhibiting the wound healing capabilities of keratinocytes (Rotty and Coulombe 

2012; Wawersik et al. 2001). We discovered that a role for IL-22 was only evident 

with high doses of parasites, suggesting that a threshold of inflammation might 

have to be reached before IL-22 contributed to tissue protection. Taken together, 

our results demonstrate a previously unknown role for IL-22 in limiting pathology 

during leishmania infection.  

 

2.3 Materials and methods 

 

Ethics statement  

This study was conducted according to the principles specified in the 

Declaration of Helsinki and under local ethical guidelines (Ethical Committee of 

the Maternidade Climerio de Oliveira, Salvador, Bahia, Brazil; and the University 

of Pennsylvania Institutional Review Board). This study was approved by the 

Ethical Committee of the Federal University of Bahia (Salvador, Bahia, Brazil) 

(010/10) and the University of Pennsylvania IRB (Philadelphia, PA) (813390).  All 

patients provided written informed consent for the collection of samples and 
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subsequent analysis. This study was carried out in strict accordance with the 

recommendations in the Guide for the Care and Use of Laboratory Animals of the 

National Institutes of Health. The protocol was approved by the Institutional 

Animal Care and Use Committee, University of Pennsylvania Animal Welfare 

Assurance Number A3079-01. 

 

Mice 

Female C57BL/6 mice 6-8 weeks old were purchased from the National Cancer 

Institute (Frederick, MD). B6.IL22 (Il22-/-) were donated by Pfizer (Cambridge, 

MA). All mice were maintained in specific pathogen-free facilities at the University 

of Pennsylvania.  Prior to infection, mice were anesthetized using a ketamine and 

xylazine mixture and monitored until mice were fully awake. At the end of the 

experiments, mice were humanely euthanized using carbon dioxide inhalation. 

All procedures were performed in accordance with the guidelines of the 

University of Pennsylvania Institutional Animal Care and Use Committee 

(IACUC).   

 

Parasite and infection 

  L. major (WHO /MHOM/IL/80/Friedlin wild-type L. major) and L. 

braziliensis (MHOM/BR/01/BA788) (de Moura et al. 2005) promastigotes were 

grown to the stationary phase in Schneider’s Drosophila medium (GIBCO BRL, 
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Grand Island, NY, USA) supplemented with 20% heat-inactivated fetal bovine 

serum (FBS, Invitrogen USA), 2 mM L-glutamine, 100 U of penicillin and 100 µg 

of streptomycin per mL. Infective-stage promastigotes (metacyclics) were 

isolated from 4-5 day old (L. major) and 7 day old (L. braziliensis) stationary 

culture by density gradient separation by Ficoll (Sigma) (Spath and Beverley 

2001). Mice were inoculated intradermally in the ear with 10 uL of PBS 

containing 2 x 106 L. major metacyclic promastigotes. In some experiments mice 

were infected with a low does of parasite (2 x 103) or a super-high dose of 

parasites (2 x 107).  Lesion development was measured weekly by ear thickness 

with a digital caliper (Fisher Scientific).  Mice were also assessed for pathology, 

using the following score system: no lesion (0), swelling/redness (1), deformation 

of the ear pinna (2), ulceration (3), partial tissue loss (4), and total tissue loss (5). 

Parasite burden in lesion tissues was assessed using a limiting dilution assay as 

previously described (Zaph et al. 2004).  Freeze-thawed antigen (FTAg) was 

obtained from stationary-phase promastigotes of L. major.  Soluble leishmanial 

antigen (SLA) was prepared from L. braziliensis parasites are previously 

described(Reed et al. 1986). 

 

Patients and recall assays 

All cutaneous leishmaniasis patients were seen at the health post in Corte 

de Pedra, Bahia, Brazil, which is a well-known area of L. braziliensis 

transmission.  The criteria for diagnosis were a clinical picture characteristic of 
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cutaneous leishmaniasis in conjunction with parasite isolation or a positive 

delayed-type hypersensitivity response to Leishmania antigen, plus histological 

features of cutaneous leishmaniasis.  In all cases, the immunological analysis 

was performed before therapy. For cell culture and IL-22 measurement, 

peripheral blood mononuclear cells (PBMCs) were obtained from heparinized 

venous blood layered over a Ficoll-Hypaque gradient (GE Healthcare), then 

washed and resuspended in RPMI1640  medium with 10% heat inactivated 

human AB serum (Sigma) at a concentration of 3 x 106 cells/mL.  These cells 

were added to 24-well plates and were kept unstimulated or were stimulated with 

soluble leishmania antigen (5 ug/mL) for 96 h at 37C in 5% CO2. The 

supernatants were collected and stored frozen until analyzed for cytokines. IL-22 

was measured by enzyme-linked immunosorbent assay (Pfizer). 

 

Preparation of dermal sheets 

  The dorsal and ventral sides of the mouse ear were split mechanically and 

placed dermis side down in a 24 wells plate in RPMI 1640 containing 0.25 mg/mL 

of Liberase TL (Roche, Diagnostics Corp.) and 10 mg/mL DNase I (Sigma-

Aldrich).  Ears were incubated for 90 min at 37° C in a 24-well plate. Dermal cell 

suspensions were prepared by dissociation on 70- um cell strainer (Falcon) in 

PBS containing 0.05% BSA and 20 mM EDTA.  
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In vitro restimulation and cytokine measurements 

For measurements of antigen-specific cytokine production in the mouse, 

the retroauricular lymph node was removed, mechanically dissociated, and single 

cell suspensions were prepared.  Cells were resuspended in RPMI 1640 

supplemented with 10% of FBS, 2 mM L-glutamine, 100 U of penicillin and 100 

µg of streptomycin per mL and 0.05 mM of b-mercaptoethanol. 4 x106 cells per 

mL were plated in 24-well plates.  Cells were incubated at 37°C in 5% CO2 with 

20 x106 L.major or L. braziliensis FTAg/mL.   Supernatants were harvested 72 h 

after stimulation and assayed using a sandwich enzyme-linked immunosorbent 

assay (ELISA)  for IFN-γ (eBioscience), IL-17 (eBioscience), and IL-22 (Pfizer). 

Cytokine concentrations were calculated from standard curves with a detection 

limit of 0.030 ng/mL. 

 

Antibodies and flow cytometry 

  Single cell suspensions from the ear were obtained as described above.  

For analysis of surface markers and intracellular cytokines, some cells were 

incubated for 4 h with 10 mg/mL of brefeldin A, 50 ng/mL of PMA and 500 ng/mL 

ionomycin (Sigma-Aldrich).  Before staining, cells were incubated with an anti-

Fcg III/II receptor and 10% rat-IgG in PBS containing 0.1% BSA.  Cells were 

stained for dead cells (Invitrogen) and surface markers (CD4, CD8b [BioLegend], 

CD45, Ly6G, CD11b [eBioscience]) followed by fixation with 2% of formaldehyde. 
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The data were collected using LSRII flow cytometer (BD) and analyzed using 

FlowJo software (Tree Star). 

  

RNA isolation, purification, and quantitative real-time PCR 

Total RNA was extracted from ear tissue samples in 700uL of RLT lysis 

buffer (Qiagen). The sample was homogenized using a tissue homogenizer 

(FastPrep-24, MP Biomedical), and total RNA was extracted according to the 

recommendations of the manufacturer and further purified using the RNeasy Mini 

kit (QIAGEN).  RNA was reverse transcribed using high capacity cDNA Reverse 

Transcription (Applied Biosystems).  Real-time RT-PCR was performed on a 

ViiA™ 7 Real-Time PCR System (Applied Biosystems).  Relative quantities of 

mRNA for several genes was determined using SYBR Green PCR Master Mix 

(Applied Biosystems) and by the comparative threshold cycle method, as 

described by the manufacturer.  mRNA levels for each sample were normalized 

to Ribosomal protein S11 gene (RPS11). Primers were designed using Primer 

Express software (version 2.0; Applied Biosystems); Rps11, forward, 5’-

CGTGACGAAGATGAAGATGC-3’ and reverse, 5’-

GCACATTGAATCGCACAGTC-3’; Krt5, forward, 5'-

TTTGCCTCCTTCATCGACA-3' and reverse, 5'-CGGATCCAGGTTCTGCTTTA-

3'; Krt14, forward, 5'-ATCGAGGACCTGAAGAGCAA-3' and reverse, 5'-

TCGATCTGCAGGAGGACATT-3'; Krt6a, forward, 5'-

GAGGAGAGGGAGCAGATCAA-3' and reverse, 5'-
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CACTTGGTGTCCAGGACCTT-3'; Krt16, forward, 5'-

TTGAGGACCTGAAGAGCAAGA-3' and reverse, 5'-

CCTGGCATTGTCAATCTGC-3'; Il22, 5'-ATGAGTTTTTCCCTTATGGGGAC-3' 

and reverse, 5'-GCTGGAAGTTGGACACCTCAA-3'; Il22bp, forward, 5'-

TCAGCAGCAAAGACAGAAGAAAC-3' and reverse, 5'-

GTGTCTCCAGCCCAACTCTCA-3'; Ifng, forward, 5'-

GACTGTGATTGCGGGGTTGT-3' and reverse, 5'-

GGCCCGGAGTGTAGACATCT-3'; Il4, forward, 5'-

ATGGAGCTGCAGAGACTCTT-3' and reverse, 5'-

AAAGCATGGTGGCTCAGTAC-3'; Il17, forward, 5'-

CATGAGTCCAGGGAGAGCTT-3' and reverse, 5'-

GCTGAGCTTTGAGGGATGAT-3'; Il12p40, forward, 5'-

TTGAAAGGCTGGGTATCGGT-3' and reverse, 5'-

GAATTTCTGTGTGGCACTGG-3', Tnfa, forward, 5'-

TCACTGGAGCCTCGAATGTC-3' and reverse, 5'-

GTGAGGAAGGCTGTGCATTG-3'; Il6, forward, 5’-

ACAGAAGGAGTGGCTAAGGA-3’ and reverse, 5’-CACCATGGAGCAGCTCAG- 

3’; Il10, forward, 5'-TGTCCAGCTGGTCCTTTGTT-3’ and reverse, 5'-

ACTGCACCCACTTCCCAGT-3'; Tgfb, forward, 5’-

CGCTGCTACTGCAAGTCAGA-3’ and reverse, 5’-

GGTAGCGATCGAGTGTCCA-3’; Il27p28, forward, 5'-

GATTGCCAGGAGTGAACCTG-3' and reverse, 5'-

CGAGGAAGCAGAGTCTCTCAG-3'; Il1a, forward, 5’-
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TTGGTTAAATGACCTGCAACA-3’ and reverse, 5’-

GAGCGCTCACGAACAGTTG-3’; Il1b, forward, 5’-TTGACGGACCCCAAAAGAT-

3’ and reverse, 5’- GATGTGCTGCTGCGAGATT-3’. 

 

Microbiota collection, sequencing, and analysis 

Two independent experiments were performed using littermates as 

controls, with n=9-10 mice per cohort for a total of 9 Il22-/- mice, 3 Il22+/- mice, 

and 7 Il22+/+  mice. Microbiota was collected from the ear of the mouse using a 

swab (Catch-all Sample Collection Swab, Epicentre) moistened in Yeast Cell 

Lysis Buffer (from MasterPure Yeast DNA Purification Kit; Epicentre). DNA was 

isolated from swab specimens and amplification of the 16S-V4 region was 

performed as previously described (Hannigan et al. 2014). Sequencing of 16S 

rRNA amplicons was performed at the Penn Next Generation Sequencing Core 

using the Illumina MiSeq platform with 150 bp paired-end ‘V2’ chemistry.  

 

Pre-processing and community characterization of 16S rRNA gene 

sequence data 

Sequence pre-processing followed methods previously described 

(Hannigan et al. 2014), but modified by subsampling at 11,000 sequences per 

sample. QIIME 1.6.0 (Caporaso et al. 2010) was used for initial stages of 

sequence analysis. Sequences were clustered into OTUs (operational taxonomic 
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units, a proxy for ‘species’) using UCLUST(Edgar 2010) at 97% sequence 

similarity. Bacterial diversity was calculated using the following alpha diversity 

indices: 1) Shannon diversity index; 2) Faith’s phylogenetic distance (PD); and 3) 

Chao I species estimation; and 4) number of observed OTUs. Relative 

abundance of bacteria was calculated based on taxonomic classification of 

sequences using the RDP classifier (Wang et al. 2007) at a confidence threshold 

of 0.8. Microbiota data was analyzed with the R statistical software environment 

(ww.r-project.org). Statistical significance was determined using two-sample 

Wilcoxon tests and corrected for multiple comparisons by FDR where 

appropriate. 

 

Statistical analysis 

Results represent means ± SEM. Data were analyzed using Prism 5.0 

(GraphPad Software, San Diego, CA).  Statistical significance was determined by 

one-way ANOVA when comparing more than two groups and by an unpaired 

two-tailed Student’s t test to compare means of lesion sizes, parasite burdens, 

and cytokine production from different groups of mice. Statistically significant 

differences were defined as * when p values <0.05. 

 

2.4 Results 

Leishmania infections induce the production of IL-22 
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Since IL-22 can have tissue protective effects, we investigated whether IL-

22 might help control pathology during infection with leishmania. We first asked 

whether infection with leishmania parasites led to an increase in IL-22 

production. C57BL/6 (wild-type) mice were infected with L. major and were 

euthanized at 3 days, 2 weeks or 5 weeks after infection.  Cells from the draining 

lymph nodes were stimulated with leishmanial antigen and cytokine levels were 

assessed.  As expected during infection with L. major, IFN-γ and IL-17 were 

produced in an antigen dependent manner (Figure 2a-b). As early as 3 days after 

infection there was an antigen specific production of IL-22, which was maintained 

at 2 and 5 weeks post-infection (Figure 2c). Because we know CD4+ T cells can 

be a major source of IL-22 (Liang et al. 2006; Zheng et al. 2007), we wanted to 

determine if CD4+ cells contributed to the antigen-specific production of IL-22 

during L. major infection. Thus, C57BL/6 mice were infected with L. major and 

depleted of CD4+ cells in vivo using a neutralizing antibody 2 days prior to 

sacrificing the mice. Cells were harvested from the draining lymph nodes at 3 

days post-infection and cultured with media alone or with L. major antigen for 72 

hours. Antigen stimulated cells from anti-CD4 treated mice produced significantly 

less IL-22 than untreated mice (Figure 2d), demonstrating that the production of 

IL-22 is dependent on the presence CD4+ T cells. We also observed the 

production of IL-22 from cells of mice infected with another species of the 

parasite, L. braziliensis (data not shown). To determine if patients infected with L. 

braziliensis parasites also produced IL-22, peripheral blood mononuclear cells 

(PBMCs) from leishmaniasis patients were isolated and cultured with leishmanial 
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antigen. Similar to cells from mice, PBMCs from infected patients, but not healthy 

subjects, produced IL-22 in response to stimulation with leishmanial antigen 

(Figure 2e), suggesting that IL-22 may be important in human patients as well as 

in experimental murine infections. 

 

IL-22 limits pathology during leishmania infection independent of parasite 

control   

 To determine if IL-22 plays a protective role during the course of infection 

with leishmania, C57BL/6 and Il22-/- mice were infected with L. major and the 

disease monitored.  Il22-/- mice exhibited larger lesions compared with wild-type 

mice (Figure 3a). We noticed that in addition to greater swelling, the ears of Il22-/- 

mice often exhibited more severe pathology than wild-type mice, and in some 

cases led to tissue loss at the site of infection (Figure 3b). To quantify these  
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Figure 2: IL-22 is induced during leishmania infections. C57BL/6 mice were intradermally 
infected with 2 x 106 L. major promastigotes metacyclics in the ear. Cells from the draining lymph 
nodes of infected mice were isolated and cultured for 72 hours with media or leishmania antigen. 
Supernatants were collected and (a) IFN-γ (b) IL-17, and (c) IL-22 release was measured by 
ELISA. (d) C57BL/6 mice were intradermally infected with 2 x 106 L. major promastigotes 
metacyclics in the ear and two days later treated with anti-CD4. Mice were euthanized on day 3 
and cells from the draining lymph nodes were isolated and cultured for 72 hours with media or 
leishmania antigen to analyze IL-22 production by ELISA. (e) PBMCs from healthy subjects and 
L. braziliensis infected patients were cultured for 72 hours with media or L. braziliensis antigen. 
Supernatants were collected and analyzed for IL-22 release by ELISA. Data are representative of 
at least 3 independent experiments, with 3-5 mice per group. Error bars indicate mean ± SEM, *p 
< 0.05, **p < 0.01, ***p < 0.001. 

 

changes, we employed a scoring system that better captures the pathology 

associated with leishmania infection. As seen in Figure 3c, Il22-/- mice exhibited 

greater pathology than wild-type mice infected with L. major. To determine if the 

increased pathology observed following L. major infections was due to higher 

parasite levels in Il22-/- mice, we assessed the parasite burden in wild-type and 

Il22-/- mice at 2, 5 and 12 weeks of infection, and found no significant differences 

(Figure 3d).   
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 L. braziliensis parasites are known to induce a particularly strong 

inflammatory response in patients, and also cause mucosal leishmaniasis, the 

most severe form of the disease (de Oliveira and Brodskyn 2012). Therefore, we 

asked if IL-22 regulated the lesion resolution in this infection as well. We infected 

wild-type and Il22-/- mice with L. braziliensis and followed the course of infection. 

As with L. major, L. braziliensis infected Il22-/- mice had significantly larger 

lesions than wild-type mice with more pathology, but no differences in the 

number of parasites within the lesions (Figure 3e-f).  

 

IL-22 maintains wound-healing capabilities in the skin during L. major 

infection 

The resolution of a leishmanial lesion is analogous to wound healing, 

which requires keratinocyte proliferation and differentiation (Martin 1997). 

Therefore, we analyzed the expression of several genes at the peak of infection 

to assess keratinocyte functions in the lesions of wild-type and Il22-/- mice.  We 

observed no difference in the expression of keratin 5 and keratin 14, both of 

which are expressed in proliferating keratinocytes, between wild-type and Il22-/- 

mice (Figure 4a). We then decided to look at other keratins, which are 

upregulated in chronic wounds and can inhibit the ability of keratinocytes to 

efficiently heal  
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Figure 3: IL-22 limits pathology during leishmania infection. (a) C57BL/6 (wild-type) and Il22-

/- mice were intradermally infected with 2 x 106 L. major promastigote metacyclics and euthanized 
at various time-points after infection. The lesions were assessed by measuring ear thickness for 6 
weeks. (b) Pictures were taken at 5 weeks post-infection. (c) Lesion pathology was determined 
based on a pathology score. (d) Number of parasites in the lesions was quantified using a limiting 
assay at 2, 5, and 12 weeks post-infection. (e) Wild-type and Il22-/- mice were intradermally 
infected with 2 x 106 L. braziliensis promastigote metacyclics and lesions were assessed by 
measuring ear thickness and given a pathology score for 12 weeks and (f) parasite numbers 
were quantified using a limiting dilution assay in the lesions at 12 weeks post-infection. Data are 
representative of at least 2 independent experiments, with 3-5 mice per group. Error bars indicate 
mean ± SEM, *p < 0.05. 
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wounds and damage (Rotty and Coulombe 2012; Wawersik et al. 2001). We 

observed that Il22-/- mice had higher expression of keratin 6a and keratin 16 

(Figure 4b), both of which are known to inhibit keratinocytes migration. Thus, one 

role of IL-22 during cutaneous leishmaniasis may be to promote wound healing 

capabilities of keratinocytes by regulating the expression of keratins involved in 

migration and differentiation.   

 

The requirement for IL-22 depends on parasite burden and inflammation 

Recently, it was reported that IL-22 does not play a role during a low dose 

of infection with L. major (Brosch et al. 2014). Our results, taken together with 

other findings prompted us to consider the possibility that IL-22 might only be 

required when a threshold of inflammation and tissue damage was present. To 

test this hypothesis, we infected mice with a super high dose of parasites (2 x 

107), an intermediate dose (2 x 106), and with a low dose of parasites (2 x 103), 

and followed the course of infection. Because we noticed some variability 

between experiments, we decided to pool data from multiple experiments and 

compare pathology at the peak of infection. Similar to recent findings in which 

mice were infected with a low dose of parasites(Brosch et al. 2014), we observed 

no difference in the lesion size or pathology between wild-type and Il22-/- mice 

when infected with 2 x 103 parasites (Figure 5a). On the other hand, Il22-/- mice  
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Figure 4: IL-22 regulates the expression of skin repair genes during L. major infection. (a-
b) Wild-type and Il22-/- mice were intradermally infected with 2 x106 L. major promastigote 
metacyclics and RNA was isolated from the lesions at 5 weeks post-infection to assess gene 
expression. Data are represented as relative expression to housekeeping gene rps11 and are 
representative of at least 2 independent experiments, with 3-5 mice per group. Error bars indicate 
mean ± SEM, *p < 0.05. 

 

infected with 2 x 106 and 2 x 107 parasites had more pathology than their wild-

type counterparts (Figure 5b-c). We euthanized these animals at 5 weeks post-

infection and assessed their parasite burdens.  As expected from the results 

described above, no differences were observed in the parasite burden between 

wild-type and Il22-/- mice (data not shown). We then measured levels of IL-22 

expression in the lesions, and found significantly higher expression of Il22 mRNA 
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when mice were infected with more parasites (Figure 5d). The IL-22 binding 

protein (IL-22BP) is a soluble receptor that inhibits IL-22 signaling through its 

receptors (Xu et al. 2001). Thus, we examined the expression of Il22BP in wild-

type mice infected with L. major infection. Unlike IL-22, IL-22BP was expressed 

at significantly lower levels when mice were infected with more parasites (Figure 

5e). These results suggest that following infection with high numbers of parasites 

IL-22 is induced to a greater extent and less inhibited by IL-22BP, and that IL-22 

helps regulate the pathology associated with a higher parasite burden. 

 

IL-22 does not modulate the skin microbiota at the steady state 

Recent studies indicate that the skin microbiota influences the pathology 

associated with leishmania infection (Naik et al. 2012). Since IL-22 regulates the 

production of antimicrobial peptides (AMPs) (Liang et al. 2006; Sonnenberg et al. 

2012), we considered the possibility that homeostatic levels of IL-22 might 

influence AMP levels, resulting in changes in the skin microbiota and 

consequently disease development. To test this idea, the ears of uninfected 

Il22+/+/Il22+/- and Il22-/- littermates were swabbed to extract bacterial DNA. 16S 

ribosomal RNA genomic sequencing was performed and the skin microbiota was 

analyzed. In two independent experiments (n=9 Il22-/- mice and n=10 control 

littermate mice) no significant differences in bacterial diversity were observed 

between littermate controls and Il22-/- mice (Figure 6a). There were also no 

differences in the relative abundance of the bacterial communities between 
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controls and Il22-/- mice (Figure 6b). These findings indicate that Il22-/- mice do 

not have a dysbiotic skin microbiota responsible for the increased pathology.   

 

IL-22 does not regulate inflammatory cell infiltrate, but rather limits tissue 

damage during L. major infection. 

Because we observed more pathology and inflammation in the Il22-/- mice, we 

wanted to determine if there was increased inflammatory cell infiltrate in the 

lesions of these mice. We examined the presence of CD4+ and CD8+ T cells, 

CD11b+ myeloid cells, and neutrophils in the lesions of L. major infected wild-

type and Il22-/- mice at the peak of infection. While there was an increase over 

naïve skin in the frequency and numbers of T cells of wild-type and Il22-/- lesions 

and in the numbers of myeloid cells, there was no difference in these populations 

between wild-type and Il22-/- mice (Figure 7a). We also assessed transcript levels 

of inflammatory and regulatory cytokines in the lesions of wild-type and Il22-/- 

mice. As expected, Ifng levels were increased following infection, and there was 

a similar increase in wild-type and Il22-/- mice. There were minimal or no changes 

in Il4, Il17, Tnfa, Il12a, Il6, Il10, Tgfb and Il27p28 gene expression between naïve 

skin and leishmanial lesions, and no significant differences between wild-type 

and Il22-/- mice (Figure 7b). However, we found that the lesions of Il22-/- mice had 

higher expression of Il1a and Il1b compared with wild-type mice (Figure 7c). The 

expression of these molecules is often observed in inflamed tissue and can be 
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Figure 5: The requirement for IL-22 is parasite dose dependent. Lesion sizes and pathology 
scores were compiled from several experiments at 5 weeks post-infection from wild-type and Il22-

/- mice that were intradermally infected with (a) 2 x 103, (b) 2 x 106, or (c) 2 x 107 L. major 
metacyclics. RNA was isolated from the lesions of wild-type mice infected with L. major to assess 
(d) Il22 and (e) Il22BP expression. Data are represented as relative expression to housekeeping 
gene rps11 and are representative of at least 2 independent experiments, with 3-5 mice per 
group. Error bars indicate mean ± SEM, *p < 0.05,*p < 0.01, ***p < 0.001. 
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Figure 6: IL-22 does not modulate the skin microbiota at the steady state. Swabs were 
collected from Il22+/+, Il22+/-, and Il22-/- cohoused littermates and bacterial DNA was isolated and 
sequenced. (a) Within sample diversity was calculated using four commonly utilized alpha 
metrics: Chao I, Shannon Index, Observed Species, and Faith’s Phylogenetic Diversity. (b) The 
microbiota composition was calculated at multiple phylogenetic levels. The outer ring represents 
the relative contributions of the 12 most prevalent genera. The inner ring represents the 
corresponding class for each genus. The remaining genera were compiled into the “Other” 
category depicted in gray. Data are representative of 2 independent experiments, with 4-5 mice 
per group. 

 

induced and released when cells encounter tissue damage (Carta, Lavieri, 

Rubartelli 2013). Although there were no differences in the immune response 

between wild-type and Il22-/- mice, increased expression of these damage-

associated molecules demonstrates that Il22-/- mice  directly or indirectly regulate 

their production during infection with L. major. 
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2.5 Discussion 

Our results uncover a previously unknown role for IL-22 during cutaneous 

leishmaniasis. While a pathologic and inflammatory role for IL-22 has been 

reported in other cutaneous diseases (Ma et al. 2008; Pantelyushin et al. 2012; 

Van Belle et al. 2012), we found that IL-22 does not promote increased 

inflammation during infection with Leishmania spp. Rather, Il22-/- mice exhibited 

more tissue damage than wild-type mice when infected with L. major or L. 

braziliensis, suggesting that IL-22 limits pathology when a threshold of 

inflammation is reached during leishmaniasis.  

Our results demonstrate that the production of IL-22 is dependent on the 

presence of CD4+ T cells, which have previously been shown to produce IL-22 

(Liang et al. 2006; Zheng et al. 2007).  However, γδ T cells, NK cells, ILCs and 

neutrophils are other potential sources of IL-22 that might contribute to the IL-22 

observed in these lesions (Carlsen et al. 2015; Taube et al. 2011; Van Belle et al. 

2012; Xu et al. 2014). Interestingly, the production of IL-22 appeared to be dose-

dependent, such that mice infected with higher doses of L. major expressed 

higher levels of IL-22 in the lesions. Inflammation and damage in other models of 

disease have been shown to induce IL-22 expression (Aujla and Kolls 2009; 

Sonnenberg et al. 2010; Zenewicz et al. 2008; Zheng et al. 2007; Zheng et al. 

2008), consistent with our findings that higher doses of L. major elicit more  
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Figure 7: IL-22 does not alter the immune response during L. major infection. Wild-type and 
Il22-/- mice were intradermally infected with 2 x106 L. major promastigote metacyclics and cells 
from 5 week old lesions were collected and analyzed by flow cytometry. (a) Representative dot 
plots and bar graphs depict frequencies and total cell numbers of CD4+, CD8+, CD11b+, and 
LY6G+ cells. (b-c) RNA was isolated from the lesions of wild-type mice infected with L. major to 
assess gene expression. Data are represented as relative expression to housekeeping gene 
rps11 and are representative of at least 3 independent experiments, with 3-5 mice per group. 
Error bars indicate mean ± SEM, *p < 0.05,*p < 0.01, ***p < 0.001. 

 

inflammation and higher expression of IL-22. Conversely, we observed a 

decrease in the expression of the IL-22 antagonist, IL-22BP, in mice with higher 

doses of the parasite. This inverse relationship of IL-22/IL-22BP regulating tissue 

damage has also been observed during Hepatitis C and schistosome infections 
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(Sertorio et al. 2015). Thus, we hypothesize that having a high IL-22/IL-22BP 

ratio is required to limit pathology.In order to determine whether the immune 

response was influenced by the absence of IL-22, we assessed cytokine 

responses within leishmanial lesions of Il22-/- mice. Changes in the balance of 

Th1 and Th2 cytokines is often associated with increased susceptibility to L. 

major, but since there were no differences in the parasite burden it was not 

surprising that the mRNA levels of Ifng, Tnfa, Il12p40 and Il4 were similar in both 

wild-type and Il22-/- mice. Moreover, there were no differences in the cellular 

infiltrate of T cells and myeloid cells in the lesions of wild-type and Il22-/- mice. 

These results prompted us to consider other ways in which IL-22 can provide 

tissue protection during inflammation. 

L. major infection leads to the development of ulcerated lesions that 

eventually resolve due to tissue remodeling at the infection site (Baldwin et al. 

2007; Elso et al. 2004a; Elso et al. 2004b). IL-22 promotes wound healing by 

increasing epithelial cell proliferation, decreasing the differentiation of 

keratinocytes and inducing anti-apoptotic molecules in keratinocytes (Boniface et 

al. 2005; Radaeva et al. 2004; Vogl et al. 2004; Wolk et al. 2006). Thus, one way 

IL-22 may enhance wound healing in leishmaniasis is by regulating L. major 

induced keratinocyte death. Additionally, IL-22 stimulates fibroblasts to produce 

extracellular matrix proteins, as well as increases the differentiation of 

myofibroblasts that help to contract wounds (McGee et al. 2013), and both of 

these functions could be critical in the resolution of leishmanial lesions. In this 

study, we found another mechanism in which IL-22 contributes to wound healing 
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and tissue repair. Keratinocyte proliferation and differentiation are critically 

regulated processes during wound repair (Martin 1997). Upon injury, activated 

keratinocytes migrate to close the wound, while basal keratinocytes proliferate at 

the basement membrane (Usui et al. 2005; Usui et al. 2008). In order for a cell to 

proliferate and repair the basement membrane, differentiation must be halted 

(Usui et al. 2005). IL-22 can induce proliferation, but also down-regulate 

keratinocyte differentiation and keratin expression (Boniface et al. 2005). Thus, 

we decided to examine the expression of various proliferation and differentiation 

markers. While the proliferation markers, keratin 5 and keratin 14 were 

unaffected by the absence of IL-22, the lesions of Il22-/- mice expressed higher 

levels of keratins 6a and 16. These genes are induced in keratinocytes upon 

injury and are maintained during reepithiliazation. However, the intensity in 

expression levels of these keratins is important because their overexpression can 

lead to defects in keratinocyte migration and wound closure (Wawersik et al. 

2001). The higher expression of keratins 6a and 16 observed in chronic wounds 

is consistent with our data showing that Il22-/- mice have a defect in wound repair 

during L. major infection. Interestingly, lower expression of keratin 16 or deletion 

of keratin 6a can enhance keratinocyte migration (Rotty and Coulombe 2012), 

which may explain the eventual lesion resolution in wild-type mice with lower 

expression of these keratins. Keratinocyte differentiation and migration are key to 

wound healing, and thus our results suggest that IL-22 may be important in 

regulating these processes through keratins 6a and 16 in order to efficiently 

resolve leishmanial lesions. 
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While IL-22 protects against certain pathogens, such as Klebsiella 

pneumonia and Citrobacter rodentium (Aujla et al. 2008; Zheng et al. 2008), in 

our study we found no evidence that IL-22 contributes to control of L. major or L. 

braziliensis, as wild-type and Il22-/- mice contained the same number of parasites 

in their lesions. These results are similar to those observed with other parasites, 

such as Toxoplasma gondii or Schistosoma mansoni (Wilson et al. 2010). 

However, this is in contrast to visceral leishmaniasis, where the production of IL-

22 has been correlated with increased protection (Ghosh et al. 2013; Pitta et al. 

2009). How IL-22 promotes resistance in visceral leishmaniasis is unknown, but it 

is unlikely to be a direct effect on the parasites, since the IL-22R is not expressed 

on the cells infected with leishmania (Wolk et al. 2004). Since stromal cells play a 

role in immunoregulation in visceral leishmaniasis, one possibility is that 

stimulation of stromal cells by IL-22 might indirectly influence the development of 

disease (Svensson et al. 2004).  

IL-22 helps maintain barrier function in the skin, but when produced at 

high levels and/or in the context of other proinflammatory cytokines, such as IL-

17, IL-22 promotes increased pathology (Sonnenberg et al. 2010). The factors 

that determine whether IL-22 will play a protective or pathologic role remain 

poorly understood, although it has been suggested that the nature of the 

inflammatory response may be a determining factor (Sonnenberg et al. 2010). 

Our results indicate that one factor determining whether IL-22 is important in 

protection in the skin may be the degree of damage induced. Thus, when Il22-/- 

mice were infected with a high dose of parasites, we routinely saw increased 
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pathology in Il22-/- mice compared with wild-type mice, while we found no 

differences in the development of lesions in Il22-/- mice and wild-type mice when 

the animals were infected with a low dose of parasites. The latter finding would 

account for the results of a prior study where IL-22 was reported to have no role 

in L. major infection (Brosch et al. 2014). These results suggest that the 

protective role for IL-22 requires a threshold of inflammation that is reached at 

high parasite doses in this experimental model. This raises the issue of how our 

murine studies relate to human leishmaniasis.  While the initial dose of parasites 

transmitted by sandflies is much less than the high doses we have studied here, 

patients also exhibit significantly more pathology than what occurs in low dose 

infections in mice. Thus, we hypothesize that in more severe forms of cutaneous 

leishmaniasis, as often seen following L. braziliensis infection, IL-22 might be 

induced to ensure that even more severe disease does not develop. Consistent 

with this was our finding that cells from patients made IL-22 in response to 

stimulation, indicating that there was sufficient damage in the patients to promote 

IL-22 production.  

Taken together, our results in Il22-/- mice show that IL-22 limits pathology 

during cutaneous leishmaniasis and suggest that once a certain threshold of 

damage is reached, IL-22 is expressed at higher levels and limits subsequent 

damage by maintaining skin barrier integrity and wound healing capacities. In the 

absence of IL-22, not only do lesions fail to resolve, but higher expression of the 

inflammatory molecules IL-1α and IL-1β may lead to even greater tissue 

destruction. Thus, IL-22 plays an important, and previously unappreciated, role in 
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maintaining skin repair properties and limiting inflammation during cutaneous 

leishmanial infections.  
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CHAPTER 3: CUTANEOUS LEISHMANIASIS INDUCES A TRANSMISSIBLE 
DYSBIOTIC SKIN MICROBIOTA THAT PROMOTES SKIN INFLAMMATION 

 

3.1 Abstract 

Skin microbiota can impact allergic and autoimmune responses, wound 

healing and defense against pathogens. Here, we investigated their role in 

cutaneous leishmaniasis. We found that infection with leishmania altered the skin 

microbiota at the lesion site, characterized by increases in the abundance of 

Staphylococcus, Streptococcus, or both. When we infected mice with leishmania 

we observed similar changes depending upon disease severity. Unexpectedly, 

the dysbiosis was not limited to the lesion site, but was transmissible to skin 

distant from the infection site, and to skin from co-housed naïve mice. This 

observation allowed us to test whether a pre-existing dysbiotic skin microbiota 

influences disease. We found that dysbiotic naïve mice challenged with L. major 

or tested for contact hypersensitivity had exacerbated skin inflammatory 

responses. These findings demonstrate that a dysbiotic skin microbiota is not 

only a consequence of skin injury, but also enhances inflammation, which has 

implications for many inflammatory cutaneous diseases.  
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3.2 Introduction 

 

 The skin is a barrier and the body’s first line of defense against injury and 

infection. It also hosts commensal populations of bacteria, fungi and viruses that 

may influence wound healing, the immune response to infection, and 

inflammatory responses that occur in chronic diseases(Canesso et al. 2014; 

Grice et al. 2010; Naik et al. 2012). Though there are strong associations 

between certain human diseases and changes in the skin microbiota(Kong et al. 

2012; Loesche et al. 2016; Oh et al. 2013), the consequences of such changes 

are unclear, including the role of skin commensal microbes in modulating dermal 

cellular responses. Animal models in which microbial communities can be 

manipulated are essential to determine whether these changes influence the 

outcome of disease.  

 Cutaneous leishmaniasis is caused by intracellular protozoan parasites 

and is characterized by a spectrum of clinical manifestations, ranging from self-

healing single lesions to chronic, and in some cases metastatic, lesions(Scott 

and Novais 2016). The factors responsible for chronic disease in leishmaniasis 

are still being defined, although it is clear that some of the most severe forms of 

the disease are not caused by uncontrolled parasite replication, but rather an 

exaggerated immune response leading to excessive inflammation(Antonelli et al. 

2005; Lopez Kostka et al. 2009; Santos Cda et al. 2013; Gonzalez-Lombana et 

al. 2013; Novais et al. 2013; Crosby et al. 2014). Unfortunately, there is no 
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vaccine for leishmaniasis and drug treatment is often ineffective, which provides 

the impetus for better understanding the factors that drive the destructive 

inflammatory responses. Some of these severe forms of disease can be 

mimicked in mice, which can develop healing or non-healing disease following L. 

major infection depending upon whether a dominant Th1 or Th2 response 

develops (Scott and Novais 2016). Less well understood is the role the skin 

microbiota plays in cutaneous leishmaniasis. Although it has been reported that 

the course of infection in germ free mice differs from conventional mice (de 

Oliveira et al. 1999; Naik et al. 2012; Oliveira et al. 2005), how the skin 

microbiota changes in patients and conventional mice, and whether such 

changes influence disease is less clear.  

 In this study, we found that infection with leishmania parasites causes a 

decrease in bacterial diversity in the skin that is characterized by communities 

dominated by Staphylococcus spp. and/or Streptococcus spp in both humans 

and mice. We hypothesized that disease-associated shifts in the skin microbiota 

(“dysbiosis”) contribute to lesion pathology and dermal cellular responses, 

including immune and inflammatory responses in L. major infection. To test this 

we utilized a mouse model of cutaneous leishmaniasis, and found that infection 

with L. major changed the skin microbiota in a manner dependent on disease 

severity. Leishmania-induced dysbiosis was not confined to the site of infection, 

but occurred globally on the skin of infected mice, and moreover, was transferred 

to uninfected co-housed mice. Colonization of skin with Staphylococcus xylosus 

isolated from the dysbiotic mice increased inflammatory responses in a contact 
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hypersensitivity model, although not in normal skin, indicating that dysbiosis 

might exacerbate disease. Dysbiotic microbiota, when transferred to naïve mice 

prior to leishmania infection, increased disease pathology compared to control 

animals. Taken together these results indicate that the skin microbiota influences 

the inflammatory response in leishmaniasis and other inflammatory skin 

conditions. This work has significant implications for the treatment of cutaneous 

leishmaniasis and other skin diseases, and highlights the potential of the skin 

microbiota as a therapeutic target.  

3.3 Materials and methods 

Experimental model and subject details 

Mice 

Female C57BL/6 and BALB/c mice 6-8 weeks old were purchased from the 

Charles River Laboratories (Durham, NC). All mice were maintained in specific 

pathogen-free facilities at the University of Pennsylvania. Cages were changed 

twice per week with glove changes between handling each cage. Unless stated 

otherwise, a minimum of 5 mice were used based on variability observed in 

previous experiments with L. major. Mice were randomly assigned to 

experimental groups by investigators. Investigators were not blinded in this study. 

Prior to infection, mice were anesthetized using a ketamine and xylazine mixture 

and monitored until the mice were fully awake. At the end of the experiments, 

mice were humanely euthanized using carbon dioxide inhalation. All procedures 

involving mice were performed in accordance with the guidelines of the 
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University of Pennsylvania Institutional Animal Care and Use Committee 

(IACUC).  

 

 Human Cutaneous Leishmaniasis Subjects   

All cutaneous leishmaniasis patients were seen at the health post in Corte de 

Pedra, Bahia, Brazil, which is a well-known area of L. braziliensis transmission.  

The criteria for diagnosis were a clinical picture characteristic of cutaneous 

leishmaniasis in conjunction with documentation of DNA of L. braziliensis by 

PCR, or parasite isolation or documentation of amastigotes in lesion biopsies by 

histopathology. In all cases, swabs were collected before therapy. There were 44 

patients, both male (72.7%) and female (27.3%), with a median age of 27 years. 

This study was conducted according to the principles specified in the Declaration 

of Helsinki and under local ethical guidelines (Ethical Committee of the 

Maternidade Climerio de Oliveira, Salvador, Bahia, Brazil; and the University of 

Pennsylvania Institutional Review Board). This study was approved by the 

Ethical Committee of the Federal University of Bahia (Salvador, Bahia, 

Brazil)(010/10) and the University of Pennsylvania IRB (Philadelphia, 

PA)(813390). All patients provided written informed consent for the collection of 

samples and subsequent analysis.  

 

Parasite and Bacterial Cultures 
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L. major (WHO/MHOM/IL/80/Friedlin wild-type L. major) promastigotes were 

grown to the stationary phase in Schneider’s Drosophila medium (GIBCO BRL, 

Grand Island, NY, USA) supplemented with 20% heat-inactivated fetal bovine 

serum (FBS, Invitrogen USA), 2 mM L-glutamine, 100 U of penicillin and 100 µg 

of streptomycin per mL. Infective-stage promastigotes (metacyclics) were 

isolated from 4-5 day old (L. major)  

Mice 

Female C57BL/6 and BALB/c mice 6-8 weeks old were purchased from the 

Charles River Laboratories (Durham, NC). All mice were maintained in specific 

pathogen-free facilities at the University of Pennsylvania. Cages were changed 

twice per week with glove changes between handling each cage. Unless stated 

otherwise, a minimum of 5 mice were used based on variability observed in 

previous experiments with L. major. Mice were randomly assigned to 

experimental groups by investigators. Investigators were not blinded in this study. 

Prior to infection, mice were anesthetized using a ketamine and xylazine mixture 

and monitored until the mice were fully awake. At the end of the experiments, 

mice were humanely euthanized using carbon dioxide inhalation. All procedures 

involving mice were performed in accordance with the guidelines of the 

University of Pennsylvania Institutional Animal Care and Use Committee 

(IACUC).  
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 Human Cutaneous Leishmaniasis Subjects   

All cutaneous leishmaniasis patients were seen at the health post in Corte de 

Pedra, Bahia, Brazil, which is a well-known area of L. braziliensis transmission.  

The criteria for diagnosis were a clinical picture characteristic of cutaneous 

leishmaniasis in conjunction with documentation of DNA of L. braziliensis by 

PCR, or parasite isolation or documentation of amastigotes in lesion biopsies by 

histopathology. In all cases, swabs were collected before therapy. There were 44 

patients, both male (72.7%) and female (27.3%), with a median age of 27 years. 

This study was conducted according to the principles specified in the Declaration 

of Helsinki and under local ethical guidelines (Ethical Committee of the 

Maternidade Climerio de Oliveira, Salvador, Bahia, Brazil; and the University of 

Pennsylvania Institutional Review Board). This study was approved by the 

Ethical Committee of the Federal University of Bahia (Salvador, Bahia, 

Brazil)(010/10) and the University of Pennsylvania IRB (Philadelphia, 

PA)(813390). All patients provided written informed consent for the collection of 

samples and subsequent analysis.  

 

Parasite and Bacterial Cultures 

L. major (WHO/MHOM/IL/80/Friedlin wild-type L. major) promastigotes were 

grown to the stationary phase in Schneider’s Drosophila medium (GIBCO BRL, 

Grand Island, NY, USA) supplemented with 20% heat-inactivated fetal bovine 

serum (FBS, Invitrogen USA), 2 mM L-glutamine, 100 U of penicillin and 100 µg 
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of streptomycin per mL. Infective-stage promastigotes (metacyclics) were 

isolated from 4-5 day old (L. major) stationary culture by density gradient 

separation by Ficoll (Sigma) (Spath and Beverley 2001). An isolate of S. xylosus 

and alpha-hemolytic Streptococcus was cultured from the ears of L. major 

infected mice. For topical associations and infections, the bacteria was cultured 

in Brain heart infusion (BHI) media (Remel, Lenexa, KS, USA) shaking for 12 

hours at 37°C. 

 

Method details 

 

Leishmania infection and in vivo antibody depletions 

Mice were inoculated intradermally in the ear with 10 µL of PBS containing 2 x 

106 L. major metacyclic promastigotes. Lesion development was measured 

weekly by ear thickness with a digital caliper (Fisher Scientific). Mice were also 

assessed for pathology, using the following score system: no lesion (0), 

swelling/redness (1), deformation of the ear pinna (2), ulceration (3), partial 

tissue loss (4), and total tissue loss (5). Parasite burden in lesion tissues was 

assessed using a limiting dilution assay as previously described (Zaph et al. 

2004). In specified experiments, mice were treated with 500µg of anti-IL-12 mAb 

(BioXcell, clone R1-5D9) one day prior to infection and then twice per week for 

the duration of the experiment. Equal amounts of an isotype control, Rat IgG2a 
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(BioXcell, clone 2A3) was given in all experiments using in vivo antibody 

treatments. 

 

Bacterial topical associations, intradermal infections, and CFU 

quantification 

For topical associations,108-109 CFUs of bacteria were applied to the entire 

mouse body using sterile cotton swabs, every other day for a total of 4 times. For 

intradermal infections, mice were inoculated with 10µL of 108-109 CFU 

bacteria/mL culture. For CFU quantification, the dermal sheets of the mouse ears 

were homogenized in 1mL of PBS using a tissue homogenizer (FastPrep-24, MP 

Biomedical) and plated on tryptic soy blood agar (Remel) or mannitol salt agar 

(Acumedia) in serial dilutions. Plates were incubated overnight at 37°C and CFUs 

were counted the next day. 

 

Contact hypersensitivity and antibody treatments 

For sensitization, 1-fluoro-2,4-dinitrobenzene (DNFB) (Sigma-Aldrich) was added 

to a 3:1 acetone:olive oil dissolvent to get a final concentration of 0.5%. Mice 

were treated on the belly with 30µL of the mixture. During the challenge phase, 

mice were treated with 20µL of 0.3% DNFB (in 3:1 acetone:olive oil) on the ear 

once a day, for a total of 3 days. The mice were euthanized 24 hours after the 

last challenge. In some experiments, mice were treated with 500µg of a Rat 
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IgG2a isotype monoclonal antibody (BioXcell, clone 2A3), an anti-mouse IL-17A 

monoclonal antibody (BioXcell, clone 17F3), or an anti-mouse IL-1R monoclonal 

antibody (BioXcell, clone JAMA-147), one day prior and one day after the first 

challenge with DNFB. 

 

Preparation of dermal sheets 

The dorsal and ventral sides of the mouse ear were split mechanically and 

placed dermis side down in a 24 wells plate in RPMI 1640 containing 0.25 mg/mL 

of Liberase TL (Roche, Diagnostics Corp.) and 10 mg/mL DNase I (Sigma-

Aldrich). Ears were incubated for 90 min at 37° C in a 24-well plate. Dermal cell 

suspensions were prepared by dissociation on 40 µm cell strainer (Falcon) in 

PBS containing 0.05% BSA and 20 mM EDTA.  

  

Antibodies and flow cytometry 

Single cell suspensions from the ear were obtained as described above. For 

analysis of surface markers and intracellular cytokines, some cells were 

incubated for 4 h with 10 mg/mL of brefeldin A, 50 ng/mL of PMA and 500 ng/mL 

ionomycin (Sigma-Aldrich).  Before staining, cells were incubated with anti-

mouse CD16/CD32 mouse Fc block (eBioscience) and 10% rat-IgG in PBS 

containing 0.1% BSA. Cells were stained for dead cells with LIVE/DEAD Fixable 

Aqua Dead Cell Stain Kit (Molecular Probes) and surface markers (CD4 
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[eBioscience, clone RM4-5], CD8b [BioLegend, clone YTS156.7.7], CD45 

[eBioscience, clone 30-F11], Ly6G [eBioscience, clone 1A8-Ly6g], CD11b 

[eBioscience, clone M1/70]) followed by fixation with 2% of formaldehyde and 

permeablization with 0.2% saponin/PBS. Intracellular cytokine staining was 

performed for pro-IL-1β (eBioscience, clone NJTEN3). The data were collected 

using LSRII flow cytometer (BD) and analyzed using FlowJo software (Tree 

Star). 

  

RNA isolation, purification, and quantitative real-time PCR. 

Total RNA was extracted from ear tissue samples in 500µL of RLT lysis buffer 

(QIAgen). The sample was homogenized using a tissue homogenizer (FastPrep-

24, MP Biomedical), and total RNA was extracted according to the 

recommendations of the manufacturer and further purified using the RNeasy Mini 

kit (QIAgen). RNA was reverse transcribed using high capacity RNA-to-cDNA Kit 

(Applied Biosystems). Real-time RT-PCR was performed on a ViiA™ 7 Real-

Time PCR System (Applied Biosystems). Relative quantities of mRNA for several 

genes were determined using SYBR Green PCR Master Mix (Applied 

Biosystems) and by the comparative threshold cycle method, as described by the 

manufacturer. mRNA levels for each sample were normalized to the ribosomal 

protein S11 gene (RPS11). The primer sequences were as follows: Rps11, 

forward, 5’-CGTGACGAAGATGAAGATGC-3’ and reverse, 5’-

GCACATTGAATCGCACAGTC-3’; Il17, forward, 5'-
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CATGAGTCCAGGGAGAGCTT-3' and reverse, 5'-

GCTGAGCTTTGAGGGATGAT-3'; Tnfa, forward, 5'-

TCACTGGAGCCTCGAATGTC-3' and reverse, 5'-

GTGAGGAAGGCTGTGCATTG-3'; Il1b, forward, 5’-

TTGACGGACCCCAAAAGAT-3’ and reverse, 5’- GATGTGCTGCTGCGAGATT-

3’; Cxcl1, forward, 5'-GCACCCAAACCGAAGTCATA-3' and reverse, 5'-

CTTGGGGACACCTTTTAGCA-3'; and Ccl2, forward, 5’-

GCTTCTGGGCCTGCTGTTCA-3’ and reverse, 5’-

AGCTCTCCAGCCTACTCATT-3’. 

 

Microbiota collection, sequencing, and analysis 

Microbiota samples were collected from the ear of mice using a swab (Catch-all 

Sample Collection Swab, Epicentre) moistened in Yeast Cell Lysis Buffer (from 

MasterPure Yeast DNA Purification Kit; Epicentre). DNA was isolated from swab 

specimens using the PureLink Genomic DNA Mini Kit (Invitrogen) and 

amplification of the 16S-V4 region for the murine samples, and 16S-V1-V3 region 

for the human samples, was performed as previously described (Hannigan et al. 

2014; Meisel et al. 2016). Sequencing of 16S rRNA amplicons was performed at 

the Penn Next Generation Sequencing Core using the Illumina MiSeq platform 

with 150 bp paired-end ‘V4’ chemistry for murine samples and with 300 bp 

paired-end ‘V1-V3’ chemistry for the human samples. For the fecal samples, 

DNA was isolated using the PowerSoil DNA Isolation Kit (Mo Bio) and 
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sequencing of the 16S rRNA amplicons was conducted using 250bp paired-end 

‘V4’ chemistry with dual index primers (Kozich et al. 2013).  

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

 

Pre-processing and community characterization of 16S rRNA sequence 

data  

Sequence pre-processing followed methods previously described (Hannigan et 

al. 2014), but modified by subsampling at 5000 sequences per sample for murine 

samples, and at 1000 sequences per sample for human samples. QIIME 

1.8.0(Caporaso et al. 2010) was used for initial stages of sequence analysis. 

Sequences were clustered into OTUs (operational taxonomic units, a proxy for 

‘species’) using UCLUST(Edgar 2010) at 97% sequence similarity. Bacterial 

diversity was calculated using the following alpha diversity indices: Shannon 

diversity index and the number of observed OTUs. Relative abundance of 

bacteria was calculated based on taxonomic classification of sequences using 

the RDP classifier (Wang et al. 2007) at a confidence threshold of 0.8. Microbiota 

data was analyzed with the R statistical software environment (ww.r-project.org). 

Statistical significance was determined using two-sample Wilcoxon tests and 

corrected for multiple comparisons by FDR where appropriate. Dirichlet 
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multinomial mixture modeling was performed using the R package Dirichlet 

Multinomial and calculated as previously reported (Loesche et al. 2016).  

 

Statistical analysis 

Results represent means ± SEM. Data were analyzed using Prism 7.0 

(GraphPad Software, San Diego, CA). Statistical significance was determined by 

one-way ANOVA when comparing more than two groups and by an unpaired 

two-tailed Student’s t test to compare means of lesion sizes, parasite burdens, 

and cytokine production from different groups of mice. Variances were equal 

between experimental groups. Statistically significant differences were defined as 

* when p values were <0.05. 
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3.4 Results 

 

Characterization of microbiota colonizing human leishmaniasis lesions and 

skin 

 Dysbiosis in skin microbiota is often associated with inflammation and 

disease (Grice et al. 2010; Kobayashi et al. 2015; Kong et al. 2012; Oh et al. 

2013), suggesting that cutaneous lesions in leishmaniasis might also exhibit 

changes in the skin-residing bacterial communities. To test this, we analyzed the 

microbiota of 44 patients infected with L. braziliensis (72.7% male, 27.3% female, 

median age, 27 years old), with lesions present at various body sites (Table 1). 

We collected 2-3 skin swabs for each patient including the lesion, adjacent skin 

near the lesion, and unaffected contralateral skin of the same body site as the 

lesion (Figure 8A). Bacterial diversity was significantly lower in lesions compared 

to unaffected contralateral skin and adjacent skin sites, as measured by the 

observed species-level operational taxonomic units (OTUs) and Shannon 

Diversity indices (Figure 8B).  

Interestingly, the skin microbiota on the adjacent skin sites appeared more 

similar in composition to the lesions than to the contralateral skin (Figure 9a). To 

quantify the similarity between each site where specimens were collected, we 

used the Bray Curtis dissimilarity metric of shared microbial community structure. 

We observed that lesion and adjacent skin shared greater microbial community 

structure compared to contralateral and adjacent skin (Figure 8C). This data 
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suggests that microbiota colonizing the lesion is shared with adjacent skin sites, 

which may have implications in the immune responses at those sites. 

 We then applied a Dirichlet multinomial mixture model-based approach to 

assign the lesions to different community types (CTs) based on their taxonomic 

composition. Lesions clustered into 3 CTs (Figure 8D and Figure 9B) with distinct 

bacterial compositions. The top discriminating taxa in CT1 was Staphylococcus 

aureus, CT2 displayed a heterogeneous composition with no dominating taxa, 

and CT3 was dominated by an unclassified species of Streptococcus (Figure 8E 

and Table 2). These results suggest that cutaneous leishmaniasis lesions are 

colonized with microbiota similar to other cutaneous ulcers (Kong et al. 2012; Oh 

et al. 2013; Loesche et al. 2016), but display less heterogeneity of the colonizing 

microbiota, which is driven primarily by proportions of Staphylococcus aureus 

and Streptococcus spp. in this cohort. Interestingly, neither bacteria were 

associated with larger lesion sizes (Figure 9C), but lesion size may not be a good 

predictor of disease severity or outcome. Additional epidemiologic studies may 

be needed to further evaluate the influence of the skin microbiota in cutaneous 

leishmaniasis, yet these results clearly demonstrate that infection with leishmania 

alters the skin microbiota, creating several types of dysbiosis.   
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Supplemental Table 1

Subject ID Sex Age Body Site Lesion Size (mm2) Duration of Lesion (Days) Skin Test (mm2)
1 Male 22 Leg 396 30 440
2 Male 43 Neck 216 30 225
3 Male 18 Ankle NA 40 300
4 Male 24 Leg 225 40 144
5 Male 20 Leg 660 90 725
6 Male 16 Back 500 30 440
7 Female 30 Leg 544 21 225
8 Male 36 Thigh 437 30 Negative
9 Male 31 Face 840 60 300

10 Male 22 Arm 49 30 400
11 Female 24 Thigh 25 30 210
12 Female 39 Leg 70 30 130
13 Male 22 Leg 3300 40 110
14 Female 45 Leg 180 30 378
15 Male 26 Leg 90 10 260
16 Male 21 Arm 200 60 400
17 Female 33 Leg 380 40 NA
18 Male 21 Leg 780 21 228
19 Female 20 Leg 80 30 100
20 Male 29 Leg 500 60 180
21 Female 35 Leg 100 60 255
22 Male 37 Foot 24 60 300
23 Female 26 Arm 130 30 285
24 Male 25 Leg 150 21 180
25 Male 50 Leg 270 30 272
26 Male 55 NA 1575 60 1085
27 Male 18 Head 192 34 130
28 Male 19 Leg 480 14 208
29 Female 24 Abdomen 325 NA 700
30 Male 40 Leg 130 20 460
31 Male 57 Leg 35 45 132
32 Male 18 Leg 49 20 400
33 Male 19 Foot 306 15 441
34 Male 28 Leg 25 15 49
35 Male 39 Leg 77 30 255
36 Male 31 Leg 330 90 130
37 Female 24 Leg 1476 60 625
38 Male 63 Leg 272 20 196
39 Male 20 Arm 1377 45 225
40 Female 16 Chest 30 20 156
41 Female 24 Back 255 30 144
42 Female 64 Leg 216 30 NA
43 Male 33 Abdomen 207 40 289
44 Male 59 Thigh 340 90 255  

Table 1: Information about samples collected from cutaneous leishmaniasis patients. 
Swabs were collected from these cutaneous leishmaniasis patients prior to treatment. All 
cutaneous leishmaniasis patients were seen at the health post in Corte de Pedra, Bahia, Brazil, 
which is a well-known area of L. braziliensis transmission. The criteria for diagnosis were a 
clinical picture characteristic of cutaneous leishmaniasis in conjunction with parasite isolation or a 
positive delayed-type hypersensitivity response to Leishmania antigen, plus histological features 
of cutaneous leishmaniasis.  

. 
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Figure 8: Lesions from cutaneous leishmaniasis patients also have a dysbiotic skin 
microbiota. (A) Swabs were collected from the lesion, nearby adjacent skin, and contralateral 
skin sites for 16S rRNA analysis. (B) Bacterial diversity was assessed by the number of observed 
species-level OTUs and Shannon Index. (C) Bar charts represent intragroup mean Bray-Curtis 
dissimilarity between each skin site.  (D) PCoA values for weighted UniFrac analysis were plotted 
and colored based on the Dirichilet multinomial cluster assignment. (E) Stacked bar charts 
represent the proportion of the top 10 taxa present in each Dirichilet cluster. Samples were 
collected from an n = 44 patients. 
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Figure 9: Samples from all patients are diverse and Dirichilet multinomial clusters lesions 
into 3 community types. (A) Stacked bar charts represent the proportion of the top 10 taxa 
present in each sample. Patients are identified by number and skin type is identified as lesion (L), 
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adjacent skin sites (A), or contralateral skin sites (C). (B) Laplace approximation was used to 
measure the model fit of the Dirichilet multinomial mixture analysis. The lowest value (3) indicates 
the best fit for the model. (C) PCoA values for weighted UniFrac analysis were plotted and 
colored based on the ratio of the abundances of Staphylococcus spp. to Streptococcus spp. in 
each lesions sample and circle size is based on size of the lesion of each sample. 

 

 Supplemental Table 2

Taxa Cluster 1 Cluster 2 Cluster 3
Staphylococcus aureus 0.788992731 0.16077901 0.049802691

Unclassified Streptococcus 0.022511662 0.11087683 0.814618671
Unclassified Bacilli 0.04901982 0.10691883 0.018451401

Unclassified Gemellales 0.030965307 0.06667456 0.013448359
Unclassified Staphylococcus 0.013819064 0.06478127 0.005975455

Bacillus flexus 0.002613152 0.06594624 0.00479366
Unclassified Staphylococcus 0.010710605 0.02253503 0.004936899
Unclassified Streptococcus 0.007199348 0.0130796 0.01322084

Unclassified Bacillales 0.002463076 0.02473744 0.001617316
Staphylococcus epidermidis 0.001303855 0.02767135 0.001574108

 Table 2: Top 10 discriminating taxa that make up the Dirichilet multinomial clusters. 
Dirichlet multinomial mixture model-based approach was used to assign the lesions into different 
clusters based on their taxonomic composition. This tables provides a list of the top 10 
discriminating taxa that make up each cluster and their proportional contribution to the cluster. 

 

L. major infection induces changes to the skin microbiota in mouse models 

 Since the influence on disease of a dysbiosis is difficult to evaluate in 

humans, we employed a mouse model of leishmaniasis to assess the role 

dysbiosis might play in cutaneous leishmaniasis. C57BL/6 mice were infected in 

the ear with L. major parasites, which led to the development of a lesion that 

resolved by 12 weeks post-infection (Figure 10A-B). Prior to infection, and at 6 

and 12 weeks post-infection, swabs were collected from the ventral and dorsal  

ear skin and sequencing of the 16S ribosomal RNA gene was employed to 

assess skin microbial diversity and composition. Alpha diversity, as measured by 
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the number of observed species-level OTUs and Shannon Diversity indices, 

decreased at 6 weeks post-infection, but returned to pre-infection levels upon 

lesion resolution (Figure 10C-D). This shift in alpha diversity was paralleled by a 

significant increase in the relative abundance of Staphylococcus spp. after lesion 

development that returned to pre-infection levels once the lesions resolved 

(Figure 10E). MALDI-Tof mass spectrometry identified the Staphylococcus 

species associated with L. major infection as S. xylosus (data not shown), a 

common commensal bacteria found on mouse skin (Nagase et al. 2002).  Since 

infections can often lead to changes in the intestinal microbiota (Kamdar et al. 

2016; Lozupone et al. 2013), we also analyzed the fecal microbiota of infected 

mice, but found no significant changes in the fecal bacterial populations 

throughout the course of infection with L. major (Figure 10F), demonstrating that 

dysbiosis caused by infection is localized to the skin.  

 

L. major induced dysbiosis differs depending on the severity of the disease 

 Inflammatory responses induced by a variety of skin insults lead to 

changes in the skin microbiota (Grice et al. 2010; Gontcharova et al. 2010; Kong 

et al. 2012; Oh et al. 2013; Loesche et al. 2016), but whether the magnitude of 

the insult alters the nature or degree of the dysbiosis is not known. To address 

this we compared the microbiota from L. major infected C57BL/6 mice that 

resolve their infection and BALB/c mice that develop severely ulcerated non-

healing lesions (Figure 11A-B) (Scott and Novais 2016). Similar to C57BL/6 
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mice, BALB/c mice had significantly lower alpha diversity at 6 weeks post-

infection (Figure 11C). However, in contrast to the dominance of Staphylococcus 

spp. found on lesions of C57BL/6 mice, BALB/c mice had a dominance of 

Streptococcus spp. at 6 weeks post-infection, (Figure 11D). To rule out the 

possibility that the increase in Streptococcus in non-healing BALB/c mice was 

due to differences in the mouse strain, we depleted IL-12 in C57BL/6 mice, which 
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Figure 10: L. major infection alters the skin microbiota. C57BL/6 mice were intradermally 
infected in the ear with 2 x 106 L. major parasites. (A) Lesion size and (B) pathology were 
assessed over 12 weeks of infection. Swabs were collected from the ear at 0, 6, and 12 weeks 
post-infection and bacterial diversity was assessed by (C) number of observed species-level 
OTUs and (D) Shannon Index. Stacked bar charts represent the proportion of the top 10 taxa 
present (E) from ear swabs and (F) from fecal pellets at 0, 6, and 12 weeks post-infection. Each 
column represents the proportion of taxa for an individual mouse. Data represent two 
independent experiments (For skin swabs, n = 15 mice and for fecal pellets, n =10 mice). 
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leads to non-healing lesions similar to those seen in BALB/c mice(Heinzel et al. 

1989; Scharton-Kersten et al. 1995). As expected, anti-IL-12 mAb treated mice 

developed large non-healing lesions (Figure 11E-F).  At 4 weeks post-infection 

Staphylococcus spp. made up a high proportion of the skin microbiota in both 

groups of mice (Figure 11G). However, while the relative abundance of 

Streptococcus spp. remained less than 1% of the total population in control mice, 

it increased significantly in anti-IL-12 treated mice to >50% relative abundance 

(Figure 11G), further demonstrating that Streptococcus spp. are associated with 

more severely ulcerated lesions. Taken together, our data suggest that L. major 

infection elicits severity-dependent changes in the skin microbiota. 

 

S. xylosus mediated inflammation is dependent on skin barrier integrity  

 To determine if the dysbiosis caused by L. major infection would influence 

skin inflammatory responses, we topically associated naïve mice with S. xylosus 

(Figure 12A). One week following colonization with S. xylosus mice exhibited a 

significantly higher relative and absolute abundance of Staphylococcus spp. 

compared with naïve mice by culture-independent (Figure 12B) and culture-

dependent assays (Figure 12C). CD4+ T cells, CD8+ T cells, CD11b+ myeloid 

cells (Figure 12D), and cytokine production (data not shown) were unchanged in 

skin colonized with S. xylosus compared to naïve skin. To determine if S. xylosus 

incites inflammation upon breach of the skin barrier, we injected mice 

intradermally with S. xylosus and analyzed the inflammatory response in the skin.   
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Figure 11: Skin microbiota alterations in L. major infection are dependent on disease 
severity. C57BL/6 and BALB/c mice were intradermally infected with L. major parasites. Lesional 
severity was assessed by (A) ear thickness and (B) a pathology score over the course of 
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infection. Swabs for sequencing of 16S rRNA genes were collected from the lesions at 0 and 6 
weeks post-infection. (C) Alpha diversity was assessed by Shannon Index. (D) Stacked bar 
charts represent the proportion of the top 10 taxa present in each sample. Data are 
representative of two independent experiments (n=5-10 mice per group). C57BL/6 mice were 
treated with an isotype or anti-IL-12 mAb and intradermally infected in the ear with L. major 
parasites. Lesional severity was assessed by (E) ear thickness and (F) a pathology score over 
the course of infection. Anti-IL-12 mAb treated mice were euthanized at 6 weeks post-infection 
due to severe disease. (G) Swabs were collected from the lesions at 4 and 6 weeks post-infection 
and proportions of Staphylococcus and Streptococcus were assessed. Data are representative of 
two independent experiments (n=10 mice/group). 

 

These mice had significantly higher expression of Il17, Tnfa, Il1b, Cxcl1, and 

Ccl2 compared with either naïve or colonized mice (Figure 12E-F), suggesting 

that S. xylosus might contribute to skin inflammation when the skin barrier is 

compromised. 

 While skin colonized with S. xylosus appeared immunologically normal, 

based on the results above we hypothesized that the response to damage might 

differ between normal and dysbiotic skin. We tested this idea using a model of 

contact hypersensitivity in which sensitizing and challenging the skin with a 

known skin irritant, dinitrofluorobenzene (DNFB), increases transepidermal water 

loss, an indication of skin barrier dysfunction (Figure 13A). Naïve C57BL/6 mice 

were colonized with S. xylosus prior to sensitization with DNFB (Figure 13B). 

DNFB challenge resulted in a significant increase in neutrophils (CD11b+ Ly6G+) 

and expression of pro-IL-1β from myeloid cells (Figure 13C-D). Since IL-17 and 

IL-1 can both lead to an increase in neutrophil recruitment, we investigated 

whether these cytokines played a role in the increase of neutrophils in S. xylosus 

treated mice. Mice colonized with S. xylosus were treated with an isotype control 

mAb, anti-IL-17A mAb, or anti-IL-1R mAb prior to DNFB challenge (Figure 13E), 
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and neutralizing IL-17 or IL-1 decreased neutrophil recruitment (Figure 13F). 

Thus, it appears that once the integrity of the skin is compromised a commensal 

such as S. xylosus can induce IL-17 and IL-1 expression, leading to increased 

inflammation. 
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Figure 12: Staphylococcus xylosus isolated from L. major lesions causes inflammation 
only when injected intradermally. (A) C57BL/6 mice were topically colonized with 108-109 S. 
xylosus every other day for a total of 4 applications; naïve mice were unassociated. (B) Prior to 
and 14 days post colonization, swabs were collected to analyze the proportion of Staphylococcus. 
(C) Ear lysates from naïve and S. xylosus colonized mice were cultured on mannitol salt agar 
plates and colony forming units were counted after overnight incubation at 37°C. (D) Flow 
cytometry analysis was performed for CD4+, CD8+, and CD11b+ cells in the ears of naïve or 
colonized mice 14 days post-association. Cells were pregated on live, singlet, CD45+ cells. Data 
are representative of two independent experiments (n = 4 mice/group). C57BL/6 mice were 
topically colonized or intradermally infected in the ear with S. xylosus. Fourteen days later, skin 
was harvested and mRNA expression was assessed for (E) cytokine and (F) chemokine genes. 
Data are representative of one experiment (n = 5 mice/group). 

 

 To determine if colonization with Streptococcus spp. might have a similar 

effect, we isolated Streptococcus from L. major infected mice that had been 
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treated with anti-IL-12 mAb. The immune responses in mice sensitized and 

challenged with DNFB colonized with Streptococcus was unchanged (Figure 

14A). However, we were unable to achieve stable colonization with the 

streptococcal isolate (Figure 14B), suggesting that this particular lesion-

associated Streptococcus isolate requires additional as yet undefined nutrients or 

other conditions to colonize normal skin.  

 

L. major-induced dysbiosis is transmissible to uninfected skin 

The observation that the lesional microbiota of human cutaneous leishmaniasis 

extends to adjacent seemingly normal skin sites prompted us to ask if the same 

was true in the mouse model of L. major infection. To answer this question, we 

compared the bacterial composition at the lesion site (infected ear) and the 

contralateral ear of infected mice. As expected, the infected ear was dominated 

by Staphylococcus spp. at the peak of infection. Interestingly, the contralateral 

ear also had a high proportion of Staphylococcus spp., despite the absence of 

infection (Figure 15A). We also observed higher bacterial loads on the infected 

and contralateral ears when compared to naïve skin (Figure 15B). These data 

demonstrate that in the mouse model, the dysbiotic microbiota caused by L. 

major infection is transmissible to the non-inflamed, contralateral ear.  

A dysbiotic intestinal microbiota is often transmissible by simply co-

housing mice (Elinav et al. 2011a; Zenewicz et al. 2013). Whether transmission 

of the skin microbiota also occurs is less clear, although co-habiting families may 
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share their skin microbiota(Song et al. 2013). To directly address this issue we 

tested if naïve mice co-housed with L. major infected mice might acquire their 

dysbiotic microbiota. C57BL/6 mice were infected with L. major and co-housed  
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Figure 13: S. xylosus colonization exacerbates skin inflammation during contact 
hypersensitivity. (A) C57BL/6 mice were sensitized with DNFB or vehicle control on the belly 
and challenged with DNFB or vehicle 5 days later. Transepidermal water loss was measured on 
ear skin of vehicle control and DNFB treated mice. (B) C57BL/6 mice were topically associated 
with 108-109 S. xylosus every other day for a total of 4 applications and control C57BL/6 mice 
were left unassociated. The next day, control and S. xylosus associated mice were sensitized on 
the belly with DNFB. 5 days later, control and S. xylosus associated mice were challenged with 
DNFB. Representative flow cytometry plots and graphs depict the expression of (C) CD11b+ 
Ly6G+ cells and (D) CD11b+ IL-1β+ cells. (E) C57BL/6 mice were topically associated with 108-
109 S. xylosus every other day for a total of 4 applications and then treated with isotype, anti-IL-
17, or anti-IL-1R mAbs prior to sensitization and challenge with DNFB. (F) Graphs depict the 
expression of CD11b+ Ly6G+ cells in the skin of treated mice. All data are representative of two 
independent experiments (n = 5 mice/group). 
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Figure 14. Streptococcus does not colonize naïve skin and fails to exacerbate skin 
inflammation during contact hypersensitivity. (A) C57BL/6 mice were topically associated 
with 108-109 of an alpha hemolytic streptococcal isolate or S. xylosus every other day for 4 
applications and control C57BL/6 mice were left unassociated. The next day, all mice were 
treated on the belly with DNFB. Five days later, control alpha hemolytic Streptococcus and S. 
xylosus mice were challenged with DNFB. Bar graphs of skin cells depict the abundance of 
CD11b+ Ly6G+ cells present in the ear. (B) Colony forming units were measured after skin 
homogenates were cultured on tryptic soy blood agar plates overnight from the ears of control 
and alpha hemolytic or S. xylosus associated mice.  Data are representative of two independent 
experiments (n = 5 mice/group). 

 

with naïve mice for 6 weeks, while a group of control naïve mice were housed 

separately. Similar to the infected and contralateral ears, the skin of the co-
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housed naïve mice also acquired a high abundance of Staphylococcus spp., 

while the control naïve mice maintained a diverse population of bacteria (Figure 

15C). Our data demonstrate that the dysbiotic skin microbiota caused by L. major 

infection is transmissible to naïve mice and allows us to assess the 

consequences of this acquisition in inflammatory responses occurring in the skin. 

L. major-induced dysbiosis exacerbates disease during inflammation and 

infection 

 While we and others have shown that colonizing mice with a single 

organism at high levels can alter immune responses (Figure 13) (Naik et al. 

2012; Naik et al. 2015), whether a naturally transmitted dysbiosis would alter 

immune skin immune responses has not been tested. To assess this, we co-

housed naïve mice with L. major infected mice for 6 weeks to create “naïve” 

dysbiotic mice. Control mice were housed separately and never exposed to L. 

major infected mice. We then compared the contact hypersensitivity responses of 

both groups of mice to DNFB.  Dysbiotic co-housed mice had significantly more 

neutrophils and pro-IL-1β production in the skin than control mice (Figure 16A-B), 

similar to mice colonized with high numbers of bacteria.  

 Taken together, our results suggested that mice with dysbiotic skin might 

respond differently to infection with L. major when compared with normal mice. 

To determine if this was the case, naïve mice were co-housed with L. major 

infected mice for 6 weeks and then infected with L. major. At 5 weeks post-

infection, we analyzed the inflammatory cells and cytokines in the lesions of  
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Figure 15. L. major induced dysbiosis is transmissible to uninfected skin. (A) C57BL/6 mice 
were intradermally infected with L. major and swabs were collected from the infected and 
contralateral ears at 6 weeks post-infected for 16S rRNA gene analysis. Stacked bar charts 
represent the proportion of the top 10 taxa present in each sample. Data are representative of 
three independent experiments (n=5-10 mice per group). (B) Swabs from naïve or L. major 
infected C57BL/6 mice were cultured on mannitol salt agar plates and CFUs were counted to 
determine bacteria burden. Data are representative of 1 experiment (For naïve mice, n = 10; for 
infected and contralateral ears, n = 12). (C) Naïve C57BL/6 mice were co-housed with L. major 
infected mice for 6 weeks, while control naïve mice were housed separately. Swabs were 
collected from co-housed naïve and control naïve mice. Stacked bar charts represent the 
proportion of taxa present in each sample. Data are representative of two independent 
experiments (For infected mice, n = 15 mice; for co-housed naïve, n = 10 mice; for control naïve, 
n = 5 mice). 
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Figure 16: Dysbiosis exacerbates inflammation during DNFB treatment and L. major 
infection. Naïve C57BL/6 mice acquired dysbiotic microbiota after co-housing with L. major 
infected mice for 6 weeks. Control and dysbiotic mice were then sensitized and challenged with 
DNFB. Representative flow cytometry plots and graphs of skin cells depict the expression of (A) 
CD11b+ Ly6G+ cells and (B) CD11b+ IL-1β+ cells. Control and dysbiotic mice were intradermally 
infected with L. major parasites and the cells from the lesions were collected at 5 weeks post-
infection. Representative flow cytometry plots and graphs of skin cells depict the expression of 
(C) CD11b+ Ly6G+ cells and (D) CD11b+ IL-1β+ cells. (E) A pathology score was used to assess 
disease severity over 5 weeks post-infection. (F) Representative ear skin sections stained with 
hemotoxylin and eosin of L. major infected control and dysbiotic mice. (G) Parasite burdens were 
assessed using a limiting dilution assay after 5 weeks post-infection. Data are representative of 
two independent experiments (For dysbiotic mice, n = 4 mice; for control mice, n = 5). 

 

control and dysbiotic mice. Similar to DNFB challenge, L. major infected skin had 

significantly more neutrophils and IL-1β in dysbiotic mice compared to control 

mice (Figure 16C-D). Furthermore, the dysbiotic mice had significantly greater 

lesion severity, characterized by increased skin ulceration, than control mice 

(Figure 16E-F) despite similar parasite burdens (Figure 16G). These findings 
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demonstrate that the skin microbiota influences the magnitude of lesion severity 

following infection with L. major.   

3.5 Discussion 

Interactions between the immune system and the microbiota can be either 

beneficial or harmful, depending on the context (Gaboriau-Routhiau et al. 2009; 

Naik et al. 2012; Atarashi et al. 2013; Naik et al. 2015; Kobayashi et al. 2015). In 

our studies, we found that leishmania infections in humans and mice change the 

composition of the skin microbiota. The nature of the changes in mice differed 

depending on the severity of inflammation, with Staphylococcus spp. dominant in 

moderate lesions and Streptococcus spp. increasing in more severe lesions in 

mice infected with L. major.  In humans, we found individuals with a dominance 

of Staphylococcus aureus, Streptococcus spp., or a mixture of both, although 

whether these distinct skin microbiota influences the outcome of disease is yet 

unknown. However, our studies in mice clearly suggest that further studies in 

patients are warranted.    

Why dysbiosis occurs during cutaneous leishmaniasis, or in other 

inflammatory conditions, is unknown. Innate defenses, such as antimicrobial 

peptides (AMPs), can target certain bacteria and play a role in disrupting the 

microbiota in the intestine and in the skin(Cogen et al. 2010; Dorschner et al. 

2001; Natsuga, Cipolat, Watt 2016; Nizet et al. 2001; Salzman et al. 2010), and 

may also be responsible for the dysbiosis caused by L. major infection. We found 

that infection with L. major causes changes in AMP expression in the skin (data 
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not shown), and mice deficient in a cathelicidin-type antimicrobial peptide 

(CAMP) appear more susceptible to infection with L. amazonensis (Kulkarni et al. 

2006). Whether this deficiency in CAMP causes changes in the skin microbiota 

remains to be determined, but these results in addition to our own findings 

suggest that AMPs in cutaneous leishmaniasis warrant further investigation. How 

AMPs might promote these changes is unclear, but virulence factors can make 

bacteria resistant to AMPs and both Staphylococcus spp. and Streptococcus 

spp. express genes that protect them from AMP killing(Kristian et al. 2005; 

Peschel et al. 1999; Peschel et al. 2001), potentially providing them with a 

survival advantage during L. major infection.  

One difficulty in studying the microbiota is assessing how changes in the 

skin microbiota influence disease, since skin dysbiosis is the consequence of the 

inflammatory response in the skin. While transmissibility of dysbiotic microbiota 

has been demonstrated in the intestinal tract(Elinav et al. 2011a; Zenewicz et al. 

2013), our data is the first to demonstrate transmissibility of the skin microbiota in 

a murine model. In this study and previous studies, colonization with a single 

bacterial species enhanced pathology(Naik et al. 2012), and although this 

approach will be essential for dissecting how particular bacteria alter immune 

responses, it will not replicate the complex changes that might be associated with 

a naturally occurring dysbiosis. Our ability to generate a mouse with dysbiotic 

skin microbiota overcomes this issue, and has allowed us to demonstrate that a 

naturally acquired dysbiosis promotes increased inflammatory responses, and in 

the case of cutaneous leishmaniasis increased disease. It is not clear how this 
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transmission occurs, although consistent with our results, evidence from human 

studies indicates that the environment influences the skin microbiota(Song et al. 

2013), and L. major infections in mice may provide a model to study the 

mechanisms involved.  

The findings from our mouse model of cutaneous leishmaniasis are similar 

to the dysbiosis that occurs during human cutaneous leishmaniasis. Interestingly, 

the different topological sites of our samples did not show any differences in the 

skin microbiota, although we only had a few samples from moist and sebaceous 

sites. Yet comparable to what has been reported by culture dependent and 

independent methods (Isaac-Marquez and Lezama-Davila 2003; Sadeghian et 

al. 2011; Layegh et al. 2015; Salgado et al. 2016), our results demonstrated that 

Staphylococcus aureus and Streptococcus spp. are highly abundant on lesional 

skin. This dysbiosis was also present on skin sites adjacent to the lesion. 

However unlike our mouse model, the dysbiotic skin microbiota did not appear to 

be transmissible to contralateral skin sites. It is not yet clear why the dysbiosis is 

confined to the lesional and adjacent skin sites in human cutaneous 

leishmaniasis but it is likely to be due to differences in grooming and 

environmental conditions between mice and humans. However, the similarities in 

the dysbiotic microbiota between the mouse model and human cutaneous 

leishmaniasis demonstrate the utility of our model system to study the role of skin 

microbiota during leishmania infections. 
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One of our findings was that skin dysbiosis does not cause immunologic 

changes in the skin or disease by itself, nor did topical colonization with S. 

xylosus, similar to results reported by recent studies (Naik et al. 2015). However, 

in mice with a defective skin barrier induced by contact hypersensitivity to DNFB, 

S. xylosus exacerbated the inflammatory response, assessed by increased 

recruitment of neutrophils and upregulated expression of IL-1β.  These results 

are consistent with other studies showing that mice with barrier defects allow 

Staphylococcus to penetrate the epidermal barrier and subsequently increase 

cytokine expression in the skin (Nakatsuji et al. 2016). In some situations the 

cytokine production may be protective, such as during a fungal infection(Naik et 

al. 2015). However, in cutaneous leishmaniasis, neutrophils and IL-1β are 

associated with increased pathology rather than the restriction of parasites 

(Charmoy et al. 2016; Fernandez-Figueroa et al. 2012; Gimblet et al. 2015; 

Gonzalez-Lombana et al. 2013; Novais et al. 2014a; Voronov et al. 2010). Thus, 

we hypothesize that L. major infection disturbs skin barrier integrity while 

simultaneously inducing a dysbiosis in the skin microbiota, which taken together 

leads to the increased recruitment of neutrophils and IL-1β recruiting cells to the 

skin, and causes increased lesion severity.  

These results raise the obvious question of what role systemic or topical 

antibiotics might play in moderating inflammatory responses associated with 

leishmaniasis (Grice 2014). As previous studies with germ-free mice indicate that 

commensal bacteria may contribute to lesion severity in cutaneous leishmaniasis 

(de Oliveira et al. 1999; Naik et al. 2012; Oliveira et al. 2005), and our studies 
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demonstrate that dysbiosis exacerbates disease, it is reasonable to predict that 

antibiotic treatment might be beneficial in leishmaniaisis. While we have been 

unsuccessful in moderating disease in mice by antibiotic treatment, there are 

examples of antibiotic therapy being protective in some cutaneous leishmaniasis 

patients (Aguiar et al. 2010; Ben Salah et al. 2013; Kim et al. 2009; Krolewiecki 

et al. 2002). However, there are other studies that find no effect of antibiotic 

treatment (Iraji and Sadeghinia 2005; Neva et al. 1997), and moreover when 

such treatment shows a positive outcome the mechanism involved is not clear. 

Given the different outcomes of studies looking at antibiotic treatment, and taken 

together with our results, it appears that the role of antibiotics in treatment needs 

further investigation.  

In summary, our findings indicate that the skin microbiota not only 

changes during leishmania infection, but when transmitted to naïve mice can 

enhance disease to leishmania. These findings have obvious consequences 

when considering how to limit disease severity in cutaneous leishmaniasis. 

Moreover, since we find that the dominant bacteria associated with a leishmania-

induced dysbiosis differs depending upon the severity of disease in mice, further 

epidemiologic studies with patients to determine the consequences of differing 

types of dysbiosis are warranted. Finally, we found that dysbiotic skin microbiota 

can be transmitted to conventional naïve mice, which provides a model to define 

how and when dysbiosis might influence control of other infections, autoimmune 

diseases and wound healing.  
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CHAPTER 4: DISCUSSION 
	

In this thesis we investigated whether IL-22 and the skin microbiota could 

influence disease during cutaneous leishmaniasis. Our results have 

demonstrated a role for IL-22 in limiting tissue damage, yet also demonstrates 

that dysbiosis in the skin microbiota exacerbates inflammation during infection. In 

both observations, expression of IL-1α and/or IL-1β, cytokines that drive 

pathology during infection, were influenced by IL-22 and dysbiosis. Yet, changes 

in IL-22 expression or the skin microbiota composition did not influence the 

parasite burden, suggesting their roles in modulating disease during cutaneous 

leishmaniasis are mediated by modulating the immune response to promote 

wound healing or to exacerbate tissue damage. This chapter will discuss the 

implications and challenges of regulating IL-22 and the skin microbiota as 

therapies for cutaneous leishmaniasis; will discuss the utility of the dysbiotic 

mouse model to study other inflammatory skin diseases; and will posit potential 

ways the microbiota is changed during infection and how those changes may 

drive the immune response to cause pathology in the skin. 

 

4.1 Implications of a dose-dependent requirement for IL-22 and areas for 

future investigation 

Our data suggest a role for IL-22 in limiting pathology during cutaneous 

leishmaniasis through initiating keratinocyte migration and decreasing the 

release of pro-inflammatory cytokines that exacerbate inflammation and tissue 



www.manaraa.com

90	

damage. Yet, it was previously shown that IL-22 has no effect during a low dose 

infection with L. major (Brosch et al. 2014). Similarly, this thesis demonstrated 

that the protection provided by IL-22 was only observed with higher doses of the 

parasite, suggesting that a certain threshold of infection-induced inflammation is 

required for IL-22 to limit pathology. In fact, we observed that greater doses of 

parasites induced higher expression of IL-22 in the skin (Figure 17a). In the 

mouse model, higher doses of infection lead to the release of more inflammatory 

cytokines and subsequently more tissue damage. It is not yet clear how parasite 

burden dictates when IL-22 is required to limit protection or whether this dose-

dependence is also observed in human patients. Data from this thesis provides 

the basis for future studies to investigate how this dose dependent requirement 

for IL-22 is mediated. 

Previous studies speculated that IL-22 could have protective effects during 

leishmaniasis due to correlative studies in human patients (Pitta et al. 2009; 

Ghosh et al. 2013). However, these studies did not demonstrate a mechanism of 

how that protection is mediated. In this thesis, we demonstrated that in the 

absence of IL-22, mice infected with L. major had increased lesion sizes and 

lesion pathology. While the exact mechanism still needs further investigation, we 

observed aberrant expression of genes that regulate keratinocyte migration, 

keratin 6 and keratin 16, in the absence of IL-22. As keratinocyte mobility is 

required for wound healing (Haase et al. 2003), we hypothesize that this defect in 

keratinocyte mobility could delay lesion resolution during cutaneous 

leishmaniasis (Figure 17b). Surprisingly, we did not observe a difference in 
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keratinocyte proliferation or survival during infection with L. major in the absence 

of IL-22. But these observations were made using an intermediate dose of 

infection. Because our data demonstrates a dose-dependent requirement for IL-

22, future studies could examine keratinocyte proliferation and survival during 

infection with varying doses of L. major. Due to increased inflammation with a 

high dose of infection, it is likely that more keratinocyte death is observed and the 

pro-survival effects of IL-22 become more apparent. These studies would provide 

more insight into how IL-22, parasite burden, and keratinocyte function contribute 

to disease resolution during cutaneous leishmaniasis. 

Keratinocytes release IL-1α in response to injury or irritation in the skin 

(Kondo and Ohshima 1996; Spiekstra et al. 2005), which increases inflammatory 

cell recruitment into the skin. Simultaneously, the damaged keratinocytes could 

signal to innate cells to release damage-associated molecules like IL-1β. In the 

absence of IL-22, we observed increased expression of both IL-1α and IL-1β 

during L. major infection (Figure 17c). IL-1β, in particular, is associated with 

neutrophil recruitment into the skin and increased pathology during cutaneous 

leishmaniasis (Fernandez-Figueroa et al. 2012; Novais et al. 2014a; Voronov et 

al. 2010; Gonzalez-Lombana et al. 2013; Charmoy et al. 2016). Excessive 

neutrophil recruitment and IL-1β release could also delay wound healing in the 

skin (Gutierrez-Fernandez et al. 2007; Goren et al. 2003; Mirza et al. 2013). 

Future studies could block IL-1 signaling and neutrophil recruitment in the 

absence of IL-22. These studies could determine if limiting this type of 

inflammation is another mechanism IL-22 uses to aid in tissue resolution, 
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 Previous studies on IL-22 and leishmaniasis did not provide a clear 

understanding of the role of IL-22 during leishmania infections. Data from this 

thesis demonstrated that IL-22 limits tissue damage and aids lesion resolution 

during cutaneous leishmaniasis in a parasite dose-dependent manner. Future 

studies will provide more details on how parasite dose, inflammation, tissue 

damage, and IL-22 interact during infection with leishmania. With this 

information, we could better understand how to use IL-22 in the treatment of 

cutaneous leishmaniasis. 

 

4.2 Leishmania in the field of the skin microbiota 

In the field of the skin microbiota, some studies are only able to 

characterize how the microbiota changes throughout disease. In this thesis, we 

aimed to determine whether the microbiota changes during infection as well as 

understand what those changes could mean. We demonstrated that leishmania 

infection, in mice and humans, induces changes in the skin microbiota dependent 

upon the severity of the disease. This dysbiosis was characterized by high levels  
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Figure 17: The role of IL-22 during L. major infection. (a) IL-22 is induced during L. major 
infection in a dose dependent manner. (b) This production of IL-22 inhibits the expression of anti-
migratory factors, keratin 6 and keratin 16, in keratinocytes. This blockade allows keratinocyte 
mobility and ultimately leads to wound closure and lesion resolution. (c) In the absence of IL-22, 
L. major lesions are larger and more severely ulcerated. This damage to the epithelial barrier 
could lead to the release of IL-1α from damaged keratinocytes as well as signal to innate cells to 
produce IL-1β in response to DAMPs. Additionally, the open wound could become exposed to 
bacterial products, which would also prompt the release of IL-1β. 

 

of Staphylococcus spp. or Streptococcus spp. in the community of bacteria 

present on the skin. These genera of bacteria, in particular Staphylococcus spp., 

have been associated with several skin disorders including atopic dermatitis, 

psoriasis, and chronic diabetic wounds (Gao et al. 2008; Alekseyenko et al. 

2013; Kong et al. 2012; Price et al. 2009; Grice et al. 2010; Loesche et al. 2016; 
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Gardner et al. 2013). But the conclusions we can draw about these associations 

are limited due to the nature of some of the studies. Work presented in this thesis 

described that dysbiosis induced by leishmania infection does not induce 

inflammation on naïve skin, but after inflammation is initiated, either by L. major 

infection or contact hypersensitivity, the dysbiotic skin microbiota exacerbated 

inflammation and subsequent tissue damage. These data tell us that the skin 

microbiota is not only an effect of inflammation in the skin, but also plays an 

active role in disease.  

Mono-colonization with a particular bacterium of interest has been used in 

several studies to determine if those bacteria play a role in disease. S. 

epidermidis, in particular, has been used to demonstrate that commensals can 

drive cytokine production from CD8+ T cells to protect against C. albicans 

infection (Naik et al. 2015). Additionally, mono-colonization with S. epidermidis 

primes regulatory T cells early after birth to limit inflammation during challenge 

with the bacterium later in life (Scharschmidt et al. 2015). These studies suggest 

that this common skin commensal is highly active in skin immunity. Similar 

observations were made during leishmania infection. Using a germ-free mouse 

model of cutaneous leishmaniasis, previous studies demonstrated that S. 

epidermidis drives inflammation and lesion development during L. major infection 

(Naik et al. 2012). These studies provided useful information about how a 

common skin commensal like S. epidermidis could influence the outcome of 

cutaneous leishmaniasis. However, there were limitations to these observations. 

We observed that during infection with leishmania parasites, S. xylosus and S. 
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aureus were dominant on the lesions of mice and humans, respectively. Our data 

suggests that S. epidermidis may be irrelevant during infection with leishmania. 

While mono-colonization can teach us about how the immune response interacts 

with common skin commensals, we believe it is important to study the 

commensals that are affected by inflammation in order to investigate how those 

changes influence disease. Utilizing the bacteria that naturally dominate during 

an inflammatory state might provide a better idea of interactions between the skin 

microbiota and the immune response during disease.  

Recent studies demonstrated that in a mouse model of atopic dermatitis, 

S. aureus increased with disease, but also was important in driving inflammation 

(Kobayashi et al. 2015). Similarly, another study showed that a breakdown of 

skin integrity allowed S. aureus to translocate deeper into the skin and 

exacerbate inflammation (Nakatsuji et al. 2016). We believe these types of 

studies, as well as work presented in this thesis, go beyond characterizing the 

changes in the skin microbiota and begin to ask how those changes influence 

disease, potentially moving the field forward. 

 

4.3 Utility of the dysbiotic mouse model to study other inflammatory skin 

disorders 

 Many studies have demonstrated associations with disease in the skin 

and a dysbiosis in the skin microbiota. Currently, our investigations into the skin 

microbiota are focused on determining if dysbiosis causes inflammation in other 
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inflammatory skin diseases. Some investigators, as well as our lab, have used 

mono-colonization of a particular bacterium to examine the effect of dysbiosis on 

disease and inflammation. However, there are limitations to this method. It 

typically requires a large amount of bacteria and multiple applications for a 

transient colonization. We established a model in these studies that could 

address some of these limitations. Uninfected mice co-housed with L. major 

infected mice acquired a similar dysbiosis characterized by a dominance of S. 

xylosus. While transferring dysbiosis by co-housing in other studies also transfers 

disease (Elinav et al. 2011b; Zenewicz et al. 2013)our model transferred the 

dysbiosis without inflammation in the skin, separating dysbiosis from disease. 

This system allowed us to investigate the role of dysbiosis prior to infection or 

disease. We believe this system could be useful in the study of other 

inflammatory skin diseases. 

Our co-housing model of dysbiosis could allow us to test whether 

dysbiosis prior to injury exacerbates pathology in mouse models of psoriasis, 

atopic dermatitis, chronic diabetic wounds, or any other model of inflammatory 

skin disease. In our system, we used L. major infected mice to create dysbiosis 

on the skin of co-housed naïve mice. However, other inflammatory skin diseases 

could potentially be used to establish this goal. It is not yet known whether the 

dysbiosis caused in other inflammatory skin models is transferrable by co-

housing. But some models induce similar, if not greater, inflammation than 

leishmania infection and thus could potentially use a co-housing system to test 

the importance of dysbiosis during infection. It would be interesting to determine 
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if other dysbiosis-causing commensals influence disease as S. xylosus does 

during infection with L. major. These studies could provide insight into which 

members of the microbiota are important in various skin diseases.  

 

4.4 Understanding how changes in the skin microbiota influence the 

immune response 

Our data demonstrates that leishmania infection causes changes in the 

skin microbiota and that acquiring a dysbiotic skin microbiota prior to infection 

magnifies inflammation and subsequent pathology in the skin. While these 

studies indicate that the skin microbiota plays a role in disease, it is not yet clear 

how these interactions are mediated.  

We hypothesize that inflammation induced by infection initiates the 

changes in the microbiota that go on to increase immunopathology. Infection with 

leishmania parasites drives immune cell infiltrate into the skin, cytokine and 

chemokine production that magnifies that infiltration, and the production of 

antimicrobial molecules (Figure 18a). Molecules like reactive oxygen species 

(ROS) and nitric oxide (NO) are important in parasite control, but can also have 

anti-bacterial properties. Innate cells produce these molecules during infection 

with leishmania parasites, but this production mostly happens in the dermis of the 

skin, potentially not close enough to affect the bacteria on the surface. 

Keratinocytes, on the other hand, are in the epidermis with direct access to 

surface bacteria. ROS and NO in the skin can be upregulated in keratinocytes in 
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response to cytokines like IFN-γ (Bito and Nishigori 2012; Sur et al. 2002). While 

one study suggests that keratinocytes can produce NO during leishmania 

infection (Blank et al. 1996), it is unclear if this production plays any role in the 

change in the skin microbiota. The same is true for antimicrobial peptides 

(AMPs). During L. major infection, the expression of some AMPs was increased, 

while others decreased in expression in the skin (data not shown). There is 

evidence that lesions are more severe in the absence of the antimicrobial 

peptide, cathelicidin (Kulkarni et al. 2011), but whether the skin microbiota plays 

a role in this phenotype is unknown. Analyzing how the skin microbiota changes 

during infection in cathelicidin deficient mice as well as in other AMP deficient 

mice could inform us about the importance of these molecules in cutaneous 

leishmaniasis and the skin microbiota. 

Our studies utilized the 16S ribosomal RNA gene to characterize how the 

skin microbiota changed throughout infection with leishmania. While this method 

was useful to identify the community of bacteria on the skin throughout infection, 

having more detailed information about how those bacteria change would be 

useful to better understand how the microbiota interacts with the host immune 

response. Our data describes the changes in the skin microbiota at the genus 

and species level, but it is clear that there are strain level differences in the skin 

bacterial communities that could stimulate the immune response differently (Fitz-

Gibbon et al. 2013; Oh et al. 2014; Oh et al. 2016). For example, while some 

strains of S. aureus stimulated IL-17 production from γδ T cells through IL-1β 

signaling, other strains were unable to produce this reaction (Maher et al. 2013). 
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As IL-17 and IL-1β are known to drive pathology during cutaneous leishmaniasis, 

understanding strain differences could be important. We observed that S. xylosus 

and S. aureus was  dominant on the lesions of leishmania infected mice and 

humans, respectively. However, these bacteria were also present on naïve and 

uninfected skin. We do not know if there are strain differences of bacteria on the 

skin before and after infection, but strain differences could influence bacterial 

gene expression and the type of host immune response initiated. Studies 

investigating how strains of bacteria change throughout disease could help us 

better understand dysbiosis and how it influences inflammation. 

The bacteria that are a part of our microbiota also produce proteins and 

metabolites that can stimulate different immune responses. Short chain fatty 

acids (SCFAs) like butyrate, acetate, and propionate, have been shown to induce 

regulatory T cells, activate the inflammasome and IL-18 production, and regulate 

macrophage function (Smith et al. 2013; Macia et al. 2015; Chang et al. 2014). 

Indole, a tryptophan catabolite from microbiota, can engage the aryl hydrocarbon 

receptor (AHR) to induce IL-22 expression (Zelante et al. 2013).  

Most studies have focused on intestinal metabolites and their interactions 

with the immune response. The bacterial metabolites of the skin have been less 

studied. However, recent studies have used 3D mass spectrometry mapping 

along with 16S rRNA gene sequencing to characterize the metabolites of the skin 

microbiota (Bouslimani et al. 2015). These studies demonstrate that members of 

the skin microbiota produce metabolites differently. During dysbiosis in 
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cutaneous leishmaniasis, it is likely that different metabolites are produced when 

certain bacteria become dominant. These metabolites could also be different 

between strains of bacteria that are present before and after infection. Recent 

studies have determined that there are strain-level differences in the production 

of metabolites from Propianibacterium acnes, a common skin commensal 

implicated as a pathogen of acne vulgaris. These studies suggest that different 

strains of P. acnes from healthy and diseased skin produce different levels of the 

metabolite, porphyrin, which may play a role in the pathogenesis of the disease 

(Johnson et al. 2016). Changes in the skin microbiota caused by leishmania 

infection may introduce different metabolites from the dominant bacteria that 

drive inflammation and subsequent pathology during cutaneous leishmaniasis 

(Figure 18b). Studies that examine the skin microbiota and their metabolites on 

healthy skin and how they change during disease are informative. But 

understanding the different roles metabolites play in modulating disease would 

be more beneficial. Future studies should examine how metabolites change 

during disease but also examine the interactions between bacterial metabolites 

and the immune system. In cutaneous leishmaniasis, where the pathology is 

largely mediated by the immune response, understanding the role of metabolites 

could be useful when considering how to regulate immunopathology. 

Ultimately, future research on immune mediated diseases like cutaneous 

leishmaniasis should involve studying the immune response in addition to 

applying information from the genomics, transcriptomics, and metabolomics 

study of the microbiota. This type of research could build upon the work done in 
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this thesis and would provide a more complete picture of how the microbiota 

interacts with the immune system in disease.  

 

4.5 Antibiotics and cutaneous leishmaniasis 

As our results have demonstrated that the skin commensal, S. xylosus, can 

exacerbate pathology in the skin during cutaneous leishmaniasis, using 

antibiotics in combination with anti-leishmania drugs might be a useful therapy. 

There are several studies examining the effects of different antibiotics on 

cutaneous leishmaniasis, but the most studied has been Paromomycin. 

Paromomycin is a protein synthase inhibitor that has been shown to increase 

lesion resolution during cutaneous leishmaniasis (el-Safi et al. 1990; Asilian et al. 

1995; Ben Salah et al. 1995; Iraji and Sadeghinia 2005; Asilian and Davami 

2006; Aguiar et al. 2010; Ben Salah et al. 2013). However just as many studies 

have demonstrated that paromomycin treatment has no effect or is less effective 

than current pentavalent antimony treatments (Hepburn, Tidman, Hunter 1994; 

Neva et al. 1997; Soto et al. 1998; Faghihi and Tavakoli-kia 2003; Armijos et al. 

2004; Shazad, Abbaszadeh, Khamesipour 2005). These studies are complicated 

to interpret due to small study sizes, different species of the parasite as well as 

different methods of pentavalent antimony and antibiotic application (Kim et al. 

2009). A well-controlled analysis is required to understand the most effective 

method to administer Paromomycin and if this treatment should be given in 

combination with drugs that also target the parasite. 
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 Other antibiotics, like azithromycin, have also been reported to decrease 

lesion size and parasite burdens during cutaneous leishmaniasis (Krolewiecki et 

al. 2002), but more studies are needed to better understand how this protection  
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Figure 18: The skin microbiota, dysbiosis, and leishmania infection. (a) Infection with 
leishmania parasites causes an infiltration of immune cells into the skin that produce inflammatory 
cytokines. These cytokines can stimulate keratinocytes to produce ROS, NO, and AMPs in the 
epidermis. (b) The production of these antimicrobial factors initiates changes in the skin 
microbiota, which leads to a dominance of a particular bacterium. These bacteria can release 
metabolites and/or virulence factors, which modulate the immune response to exacerbate 
pathology. 
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is achieved. Even antifungals have been used to help lesions heal faster and 

decrease parasite burdens during cutaneous leishmaniasis (Pinheiro et al. 2016). 

 Amphoterin B is classified as an anti-fungal and anti-protozoan drug and 

has been effective as a topical treatment during cutaneous leishmaniasis (Ruiz et 

al. 2014). These antibiotics are believed to help during the resolution of 

leishmania infections by reducing parasite burdens. The mechanism of parasite 

control is not understood with the use of any of these antibiotics. Azithromycin 

can modulate macrophage function and can induce cytokine production from 

these cells (Krolewiecki et al. 2002; Xu et al. 1996; Ianaro et al. 2000). Thus, it 

can mediate anti-parasitic immunity by direct interactions with the immune 

response. Another possibility is that antibiotics modulate the skin microbiota, 

which indirectly shapes the type of immune response initiated during infection. 

Interestingly, there is evidence that Paromomycin can decrease bacterial 

contamination of leishmania lesions as well as decrease parasite burdens (el-On, 

Sneier, Elias 1992). It is possible that other antibiotics could also influence the 

bacteria on lesions during cutaneous leishmaniasis, but further characterization 

of the microbiota of leishmanial lesions after antibiotic treatment is needed to 

determine the effects of these drugs. 

In agreement with work presented in this thesis, other studies have 

demonstrated that Staphylococcus spp. and Streptococcus spp. are significantly 

increased during cutaneous leishmaniasis (Layegh et al. 2015; Salgado et al. 

2016). We hypothesize that utilizing antibiotics with some specificity for these two 
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genera might help alleviate disease. Current antibiotics tend to have a broad 

spectrum of targets and may not be ideal to target specific bacteria. Information 

from the species and strain levels of these bacteria may be required to generate 

antibiotics effective to treat cutaneous leishmaniasis. If such antibiotics are 

produced, a combined therapy of anti-leishmania and anti-staphylococcal or anti-

streptococcal could be the most effective way to clear the parasite and regulate 

immune mediated pathology. 
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